Skip to main content

JITted SQLite user-defined functions and aggregates

Project description

Put some Numba in your SQLite

Fair Warning

This library does unsafe things like pass around function pointer addresses as integers. Use at your own risk.

If you're unfamiliar with why passing function pointers' addresses around as integers might be unsafe, then you shouldn't use this library.

Requirements

  • Python >=3.7
  • numba

Use nix-shell from the repository to avoid dependency hell.

Installation

  • poetry install

Examples

Scalar Functions

These are almost the same as decorating a Python function with numba.jit.

from typing import Optional

from numbsql import sqlite_udf


@sqlite_udf
def add_one(x: Optional[int]) -> Optional[int]:
    """Add one to `x` if `x` is not NULL."""

    if x is not None:
        return x + 1
    return None

Aggregate Functions

These follow the API of the Python standard library's sqlite3.Connection.create_aggregate method. The difference with numbsql aggregates is that they require two decorators: numba.experimental.jit_class and numbsql.sqlite_udaf. Let's define the avg (arithmetic mean) function for 64-bit floating point numbers.

from typing import Optional

from numba.experimental import jitclass

from numbsql import sqlite_udaf


@sqlite_udaf
@jitclass
class Avg:
    total: float
    count: int

    def __init__(self):
        self.total = 0.0
        self.count = 0

    def step(self, value: Optional[float]) -> None:
        if value is not None:
            self.total += value
            self.count += 1

    def finalize(self) -> Optional[float]:
        if not self.count:
            return None
        return self.total / self.count

Window Functions

You can also define window functions for use with SQLite's OVER construct:

from typing import Optional

from numba.experimental import jitclass

from numbsql import sqlite_udaf


@sqlite_udaf
@jitclass
class WinAvg:  # pragma: no cover
    total: float
    count: int

    def __init__(self) -> None:
        self.total = 0.0
        self.count = 0

    def step(self, value: Optional[float]) -> None:
        if value is not None:
            self.total += value
            self.count += 1

    def finalize(self) -> Optional[float]:
        count = self.count
        if count:
            return self.total / count
        return None

    def value(self) -> Optional[float]:
        return self.finalize()

    def inverse(self, value: Optional[float]) -> None:
        if value is not None:
            self.total -= value
            self.count -= 1

Calling your aggregate function

Similar to scalar functions, we register the function with a sqlite3.Connection object:

>>> import sqlite3
>>> from numbsql import create_aggregate, create_function
>>> con = sqlite3.connect(":memory:")
>>> create_function(con, "add_one", 1, add_one)
>>> con.execute("SELECT add_one(1)").fetchall()
[(2,)]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numbsql-4.0.0.tar.gz (22.7 kB view details)

Uploaded Source

Built Distribution

numbsql-4.0.0-py3-none-any.whl (25.1 kB view details)

Uploaded Python 3

File details

Details for the file numbsql-4.0.0.tar.gz.

File metadata

  • Download URL: numbsql-4.0.0.tar.gz
  • Upload date:
  • Size: 22.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.6

File hashes

Hashes for numbsql-4.0.0.tar.gz
Algorithm Hash digest
SHA256 374dbc642cc6c94983c010913d4db869aab54ad36956adc46562f146099a2f59
MD5 d37c1d93d168bea6099d58ec7386b5d3
BLAKE2b-256 7d9c469259f25e794e88ac86887bb79fa97643bcedb05219234bccc3d32e35ef

See more details on using hashes here.

Provenance

File details

Details for the file numbsql-4.0.0-py3-none-any.whl.

File metadata

  • Download URL: numbsql-4.0.0-py3-none-any.whl
  • Upload date:
  • Size: 25.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.6

File hashes

Hashes for numbsql-4.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 bad0b61e446bd62aee0f48b1ceeb8a2a79f89235131a08a0d48ef57734c24e5a
MD5 8fb572ec07c69681d08ed64d25aca1dd
BLAKE2b-256 5937cb62511dd5b01449ecc7e1f0a1c28b58fcdbd96da399da21578df22132fa

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page