Skip to main content

A Python package providing buffer compression and transformation codecs for use

Project description

Numcodecs is a Python package providing buffer compression and transformation codecs for use in data storage and communication applications.

https://readthedocs.org/projects/numcodecs/badge/?version=latest https://github.com/zarr-developers/numcodecs/workflows/Linux%20CI/badge.svg?branch=main https://github.com/zarr-developers/numcodecs/workflows/OSX%20CI/badge.svg?branch=main https://github.com/zarr-developers/numcodecs/workflows/Wheels/badge.svg?branch=main https://codecov.io/gh/zarr-developers/numcodecs/branch/main/graph/badge.svg

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numcodecs-0.11.0.tar.gz (4.5 MB view details)

Uploaded Source

Built Distributions

numcodecs-0.11.0-cp311-cp311-win_amd64.whl (599.9 kB view details)

Uploaded CPython 3.11 Windows x86-64

numcodecs-0.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

numcodecs-0.11.0-cp311-cp311-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

numcodecs-0.11.0-cp310-cp310-win_amd64.whl (604.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

numcodecs-0.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numcodecs-0.11.0-cp310-cp310-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

numcodecs-0.11.0-cp39-cp39-win_amd64.whl (611.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

numcodecs-0.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

numcodecs-0.11.0-cp39-cp39-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

numcodecs-0.11.0-cp38-cp38-win_amd64.whl (611.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

numcodecs-0.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

numcodecs-0.11.0-cp38-cp38-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file numcodecs-0.11.0.tar.gz.

File metadata

  • Download URL: numcodecs-0.11.0.tar.gz
  • Upload date:
  • Size: 4.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for numcodecs-0.11.0.tar.gz
Algorithm Hash digest
SHA256 6c058b321de84a1729299b0eae4d652b2e48ea1ca7f9df0da65cb13470e635eb
MD5 bd3d226db0c0d9aa2352a355e051ee3f
BLAKE2b-256 190f006424c07b551a13c773b59a3656beadbaadbcf9df1601e87fcae342618c

See more details on using hashes here.

File details

Details for the file numcodecs-0.11.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for numcodecs-0.11.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 8c2f36b21162c6ebccc05d3fe896f86b91dcf8709946809f730cc23a37f8234d
MD5 343b49503bf5d3dfc1d6b4b37ea1a2e6
BLAKE2b-256 8e682180ae5f169f6f14ddba31bd2b0a8cbc2802432d76b2e3cf7aa433289f93

See more details on using hashes here.

File details

Details for the file numcodecs-0.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numcodecs-0.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 32697785b786bb0039d3feeaabdc10f25eda6c149700cde954653aaa47637832
MD5 9076c63341bef895d36b6bc98a4fe79d
BLAKE2b-256 82014f2bcfa88527c76d3114f14214d4d3ed19434be5ac7d84dba7a879ccbf14

See more details on using hashes here.

File details

Details for the file numcodecs-0.11.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numcodecs-0.11.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7dae3f5678f247336c84e7315a0c59a4fec7c33eb7db72d78ff5c776479a812e
MD5 fe5fe787706d5010b1be788b3b26e163
BLAKE2b-256 7b1d221e7acf7f280ab8d1b2bfc84c757b8ac8b0ebb7c01427a243f359b1ba5b

See more details on using hashes here.

File details

Details for the file numcodecs-0.11.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for numcodecs-0.11.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 0fabc7dfdf64a9555bf8a34911e05b415793c67a1377207dc79cd96342291fa1
MD5 27a3279af80486966aac114ed125d6fe
BLAKE2b-256 30900d98ba52d91652736b49cdd3b7d9e3361f2b28dc4689b0e593bec3c3f5bc

See more details on using hashes here.

File details

Details for the file numcodecs-0.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numcodecs-0.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c27dfca402f69fbfa01c46fb572086e77f38121192160cc8ed1177dc30702c52
MD5 cac748d0e9dff878c7f845c06394f69d
BLAKE2b-256 1345984878149823f6d5c0fff676dd1c806e1ff3e21cc100ff9e4c3557bdd03a

See more details on using hashes here.

File details

Details for the file numcodecs-0.11.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numcodecs-0.11.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c0bc116752be45b4f9dca4315e5a2b4185e3b46f68c997dbb84aef334ceb5a1d
MD5 ce3464e65af49bdddecb1e968bc61c53
BLAKE2b-256 3fcc863b0c3290979a4b0375fd5dde505247c032c497a64af218f8e0d88fbc75

See more details on using hashes here.

File details

Details for the file numcodecs-0.11.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numcodecs-0.11.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 611.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for numcodecs-0.11.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 11596b71267417425ea8afb407477a67d684f434c8b07b1dd59c25a97d5c3ccb
MD5 0cbf4cbc468dc8826f24f81e52a4b361
BLAKE2b-256 fcb3f26561622aeae66c6e19db40577bf9a941ab7f151c456d8f98ef9189563d

See more details on using hashes here.

File details

Details for the file numcodecs-0.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numcodecs-0.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bf3925eeb37aed0e6c04d7fb9614133a3c8426dc77f8bda54c99c601a44b3bd3
MD5 20a20e9b39bd5f051ad02be89d98de9a
BLAKE2b-256 1c773423557ad21949fd395f569535ede73bffe152306b6be31025fc9b6b4288

See more details on using hashes here.

File details

Details for the file numcodecs-0.11.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numcodecs-0.11.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 694dc2e80b1f169b7deb14bdd0a04b20e5f17ef32cb0f81b71ab690406ec6bd9
MD5 fd18fdbc4b851f43711cbcdc062e07ed
BLAKE2b-256 003914b7f30fe57fd1c0f9caffd36ffb8a33311dd0e2c144517b63e919c0384a

See more details on using hashes here.

File details

Details for the file numcodecs-0.11.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: numcodecs-0.11.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 611.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for numcodecs-0.11.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 bd05cdb853c7bcfde2efc809a9df2c5e205b96f70405b810e5788b45d0d81f73
MD5 6c01d9d4112f021cc6b11681471be389
BLAKE2b-256 017f40f2cd421e594e43366c9d0bdb636896757fcb1dff6a19737bf8f0d1bd45

See more details on using hashes here.

File details

Details for the file numcodecs-0.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numcodecs-0.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ee5bda16e9d26a7a39fc20b6c1cec23b4debc314df5cfae3ed505149c2eeafc4
MD5 f73efdd12f18fade1f3163507f88d958
BLAKE2b-256 94a7e6d14e88915310c4217b13ed05f62ffbcf1f1a032a9a5d506471cf1a198f

See more details on using hashes here.

File details

Details for the file numcodecs-0.11.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numcodecs-0.11.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0c240858bf29e0ff254b1db60430e8b2658b8c8328b684f80033289d94807a7c
MD5 1f114e7e45a8d4287692e16f4646be06
BLAKE2b-256 de109dd5c945cb64755002d3c0a73115743924b0b60e529b4e224ca24315b7cc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page