Skip to main content

Fast numerical expression evaluator for NumPy

Project description

Author:

David M. Cooke, Francesc Alted, and others.

Maintainer:

Francesc Alted

Contact:
faltet@gmail.com
URL:

https://github.com/pydata/numexpr

Documentation:

http://numexpr.readthedocs.io/en/latest/

GitHub Actions:

actions

PyPi:

version

DOI:

doi

readthedocs:

docs

What is NumExpr?

NumExpr is a fast numerical expression evaluator for NumPy. With it, expressions that operate on arrays (like '3*a+4*b') are accelerated and use less memory than doing the same calculation in Python.

In addition, its multi-threaded capabilities can make use of all your cores – which generally results in substantial performance scaling compared to NumPy.

Last but not least, numexpr can make use of Intel’s VML (Vector Math Library, normally integrated in its Math Kernel Library, or MKL). This allows further acceleration of transcendent expressions.

How NumExpr achieves high performance

The main reason why NumExpr achieves better performance than NumPy is that it avoids allocating memory for intermediate results. This results in better cache utilization and reduces memory access in general. Due to this, NumExpr works best with large arrays.

NumExpr parses expressions into its own op-codes that are then used by an integrated computing virtual machine. The array operands are split into small chunks that easily fit in the cache of the CPU and passed to the virtual machine. The virtual machine then applies the operations on each chunk. It’s worth noting that all temporaries and constants in the expression are also chunked. Chunks are distributed among the available cores of the CPU, resulting in highly parallelized code execution.

The result is that NumExpr can get the most of your machine computing capabilities for array-wise computations. Common speed-ups with regard to NumPy are usually between 0.95x (for very simple expressions like 'a + 1') and 4x (for relatively complex ones like 'a*b-4.1*a > 2.5*b'), although much higher speed-ups can be achieved for some functions and complex math operations (up to 15x in some cases).

NumExpr performs best on matrices that are too large to fit in L1 CPU cache. In order to get a better idea on the different speed-ups that can be achieved on your platform, run the provided benchmarks.

Installation

From wheels

NumExpr is available for install via pip for a wide range of platforms and Python versions (which may be browsed at: https://pypi-hypernode.com/project/numexpr/#files). Installation can be performed as:

pip install numexpr

If you are using the Anaconda or Miniconda distribution of Python you may prefer to use the conda package manager in this case:

conda install numexpr

From Source

On most *nix systems your compilers will already be present. However if you are using a virtual environment with a substantially newer version of Python than your system Python you may be prompted to install a new version of gcc or clang.

For Windows, you will need to install the Microsoft Visual C++ Build Tools (which are free) first. The version depends on which version of Python you have installed:

https://wiki.python.org/moin/WindowsCompilers

For Python 3.6+ simply installing the latest version of MSVC build tools should be sufficient. Note that wheels found via pip do not include MKL support. Wheels available via conda will have MKL, if the MKL backend is used for NumPy.

See requirements.txt for the required version of NumPy.

NumExpr is built in the standard Python way:

python setup.py build install

You can test numexpr with:

python -c "import numexpr; numexpr.test()"

Do not test NumExpr in the source directory or you will generate import errors.

Enable Intel® MKL support

NumExpr includes support for Intel’s MKL library. This may provide better performance on Intel architectures, mainly when evaluating transcendental functions (trigonometrical, exponential, …).

If you have Intel’s MKL, copy the site.cfg.example that comes with the distribution to site.cfg and edit the latter file to provide correct paths to the MKL libraries in your system. After doing this, you can proceed with the usual building instructions listed above.

Pay attention to the messages during the building process in order to know whether MKL has been detected or not. Finally, you can check the speed-ups on your machine by running the bench/vml_timing.py script (you can play with different parameters to the set_vml_accuracy_mode() and set_vml_num_threads() functions in the script so as to see how it would affect performance).

Usage

>>> import numpy as np
>>> import numexpr as ne

>>> a = np.arange(1e6)   # Choose large arrays for better speedups
>>> b = np.arange(1e6)

>>> ne.evaluate("a + 1")   # a simple expression
array([  1.00000000e+00,   2.00000000e+00,   3.00000000e+00, ...,
         9.99998000e+05,   9.99999000e+05,   1.00000000e+06])

>>> ne.evaluate("a * b - 4.1 * a > 2.5 * b")   # a more complex one
array([False, False, False, ...,  True,  True,  True], dtype=bool)

>>> ne.evaluate("sin(a) + arcsinh(a/b)")   # you can also use functions
array([        NaN,  1.72284457,  1.79067101, ...,  1.09567006,
        0.17523598, -0.09597844])

>>> s = np.array([b'abba', b'abbb', b'abbcdef'])
>>> ne.evaluate("b'abba' == s")   # string arrays are supported too
array([ True, False, False], dtype=bool)

Documentation

Please see the official documentation at numexpr.readthedocs.io. Included is a user guide, benchmark results, and the reference API.

Authors

Please see AUTHORS.txt.

License

NumExpr is distributed under the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numexpr-2.10.0.tar.gz (103.6 kB view details)

Uploaded Source

Built Distributions

numexpr-2.10.0-cp312-cp312-win_amd64.whl (97.1 kB view details)

Uploaded CPython 3.12 Windows x86-64

numexpr-2.10.0-cp312-cp312-win32.whl (103.8 kB view details)

Uploaded CPython 3.12 Windows x86

numexpr-2.10.0-cp312-cp312-musllinux_1_1_x86_64.whl (924.6 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

numexpr-2.10.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (381.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

numexpr-2.10.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (383.7 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

numexpr-2.10.0-cp312-cp312-macosx_11_0_arm64.whl (92.7 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

numexpr-2.10.0-cp312-cp312-macosx_10_9_x86_64.whl (103.5 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

numexpr-2.10.0-cp311-cp311-win_amd64.whl (97.0 kB view details)

Uploaded CPython 3.11 Windows x86-64

numexpr-2.10.0-cp311-cp311-win32.whl (103.6 kB view details)

Uploaded CPython 3.11 Windows x86

numexpr-2.10.0-cp311-cp311-musllinux_1_1_x86_64.whl (922.4 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

numexpr-2.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (378.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

numexpr-2.10.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (382.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

numexpr-2.10.0-cp311-cp311-macosx_11_0_arm64.whl (92.7 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

numexpr-2.10.0-cp311-cp311-macosx_10_9_x86_64.whl (103.5 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

numexpr-2.10.0-cp310-cp310-win_amd64.whl (97.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

numexpr-2.10.0-cp310-cp310-win32.whl (103.6 kB view details)

Uploaded CPython 3.10 Windows x86

numexpr-2.10.0-cp310-cp310-musllinux_1_1_x86_64.whl (919.2 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

numexpr-2.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (376.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numexpr-2.10.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (379.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numexpr-2.10.0-cp310-cp310-macosx_11_0_arm64.whl (92.7 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numexpr-2.10.0-cp310-cp310-macosx_10_9_x86_64.whl (103.5 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

numexpr-2.10.0-cp39-cp39-win_amd64.whl (97.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

numexpr-2.10.0-cp39-cp39-win32.whl (103.6 kB view details)

Uploaded CPython 3.9 Windows x86

numexpr-2.10.0-cp39-cp39-musllinux_1_1_x86_64.whl (918.4 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

numexpr-2.10.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (375.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

numexpr-2.10.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (378.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

numexpr-2.10.0-cp39-cp39-macosx_11_0_arm64.whl (92.7 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

numexpr-2.10.0-cp39-cp39-macosx_10_9_x86_64.whl (103.5 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file numexpr-2.10.0.tar.gz.

File metadata

  • Download URL: numexpr-2.10.0.tar.gz
  • Upload date:
  • Size: 103.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.8

File hashes

Hashes for numexpr-2.10.0.tar.gz
Algorithm Hash digest
SHA256 c89e930752639df040539160326d8f99a84159bbea41943ab8e960591edaaef0
MD5 56df18afc0b5f47b6bf981a4b2a36fdc
BLAKE2b-256 15a902a933790dc184d78a739057b997d3ae60f8b10b5c5d95d28c44c84e51a3

See more details on using hashes here.

File details

Details for the file numexpr-2.10.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 748e8d4cde22d9a5603165293fb293a4de1a4623513299416c64fdab557118c2
MD5 0c8e90d61243682a65048609f1d37f91
BLAKE2b-256 171b65f9d55031698809d276d43bd624c54898439a61312fdaa05ef7a0b6139a

See more details on using hashes here.

File details

Details for the file numexpr-2.10.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: numexpr-2.10.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 103.8 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.8

File hashes

Hashes for numexpr-2.10.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 416e0e9f0fc4cced67767585e44cb6b301728bdb9edbb7c534a853222ec62cac
MD5 e565154e82a9a8e84cdda2a02e221a32
BLAKE2b-256 468f5a6d20352e2a7f7543768a8cfcd256fe20261efc6cf177dd5891d52755ce

See more details on using hashes here.

File details

Details for the file numexpr-2.10.0-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.0-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e3a973265591b0a875fd1151c4549e468959c7192821aac0bb86937694a08efa
MD5 208702569eaf3842ac43631f69a14771
BLAKE2b-256 cb0ed07ac7f415f0565b83e2a1a79c74bd1d2cad5d9205054e300d32f88a3eec

See more details on using hashes here.

File details

Details for the file numexpr-2.10.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a6cdf9e64c5b3dbb61729edb505ea75ee212fa02b85c5b1d851331381ae3b0e1
MD5 e55919f98ddc3c5ef799f61ca5f35c8d
BLAKE2b-256 88fb8653234af551b0f20264600444d8cfedce5fad90e94bef63b373393f0682

See more details on using hashes here.

File details

Details for the file numexpr-2.10.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 05278bad96b5846d712eba58b44e5cec743bdb3e19ca624916c921d049fdbcf6
MD5 270f8f80c2fda4c45c7125b103df64ba
BLAKE2b-256 82eb960c8ed5e4cf4688b77bdb05d94fa2d36d6d125dfbc7d81b48412dfd0862

See more details on using hashes here.

File details

Details for the file numexpr-2.10.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cb5e12787101f1216f2cdabedc3417748f2e1f472442e16bbfabf0bab2336300
MD5 eaa48f05390658c3e6f3f013b22017d5
BLAKE2b-256 7277d319d6fc8b45e8120411392a20746a7cb1f6bdfb00321a327a38e8497544

See more details on using hashes here.

File details

Details for the file numexpr-2.10.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b276e2ba3e87ace9a30fd49078ad5dcdc6a1674d030b1ec132599c55465c0346
MD5 f046fd88cb495dc4ffa05b0c684c5fc4
BLAKE2b-256 7114fbe9f9553c60539a3c8595787e36698f29f0875f88e91f4348e71fec4a0d

See more details on using hashes here.

File details

Details for the file numexpr-2.10.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 6b5f8242c075477156d26b3a6b8e0cd0a06d4c8eb68d907bde56dd3c9c683e92
MD5 06614f764df142e366e6a45706d85cd5
BLAKE2b-256 9ce7e2b1466244ed3e8e5bbb383d505168ef387639973c3b2e2d41eb3acf1ab1

See more details on using hashes here.

File details

Details for the file numexpr-2.10.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: numexpr-2.10.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 103.6 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.8

File hashes

Hashes for numexpr-2.10.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 03d0ba492e484a5a1aeb24b300c4213ed168f2c246177be5733abb4e18cbb043
MD5 8549491e353cb319566c0585e8b02630
BLAKE2b-256 281c6823d2ac978ef349f97b7d679e19a4f11ee1ae4376c0c91a34fce2659bbe

See more details on using hashes here.

File details

Details for the file numexpr-2.10.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 937d36c6d3cf15601f26f84f0f706649f976491e9e0892d16cd7c876d77fa7dc
MD5 a82bf6d1695e69822e9caf51e5ab7b5d
BLAKE2b-256 aeabf9f7d850240215a89650c344e02fe16d6592c701aec9dd8705f76fdd4b95

See more details on using hashes here.

File details

Details for the file numexpr-2.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4feafc65ea3044b8bf8f305b757a928e59167a310630c22b97a57dff07a56490
MD5 37c673f7915cd2c48fd47ba0fa9cf5e3
BLAKE2b-256 21531b312fd243799c4b080c81692b7bd81c9400a2da12291d0447db70cfd635

See more details on using hashes here.

File details

Details for the file numexpr-2.10.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 10789450032357afaeda4ac4d06da9542d1535c13151e8d32b49ae1a488d1358
MD5 9cc7610ae7aa250af3ab650d3b05a7f9
BLAKE2b-256 9c4353f73005f8f9fe1c9f705f0ee67c607654642427b38b55362847a96336d9

See more details on using hashes here.

File details

Details for the file numexpr-2.10.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 745b46a1fb76920a3eebfaf26e50bc94a9c13b5aee34b256ab4b2d792dbaa9ca
MD5 637a205415a9083f55c1064645fcc1f6
BLAKE2b-256 c3f9c563f5ee109bc994d265e45943020004737d08a0816584369c51c56c2805

See more details on using hashes here.

File details

Details for the file numexpr-2.10.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a602692cd52ce923ce8a0a90fb1d6cf186ebe8706eed83eee0de685e634b9aa9
MD5 b53f71e0638c1c6028e209ece0112ecb
BLAKE2b-256 d0e90b4935af61ae42caade52f143031b90ce074af0d91a2a1c6ac29b82e2bb5

See more details on using hashes here.

File details

Details for the file numexpr-2.10.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 78e0a8bc4417c3dedcbae3c473505b69080535246edc977c7dccf3ec8454a685
MD5 857094e2a56675c768f80679b07501d2
BLAKE2b-256 0446973d49b1c4496849220628a940390b28ab3baa8bc5698cf7de2377cb8c4b

See more details on using hashes here.

File details

Details for the file numexpr-2.10.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: numexpr-2.10.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 103.6 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.8

File hashes

Hashes for numexpr-2.10.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 629b66cc1b750671e7fb396506b3f9410612e5bd8bc1dd55b5a0a0041d839f95
MD5 9cc2152d401171ee1a4a6ede36e6845c
BLAKE2b-256 82e122ad5ab0a7716fefd28a812d6c6c9a893cc4c76ba423e9f0b79800bd0c8e

See more details on using hashes here.

File details

Details for the file numexpr-2.10.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1d8eb88b0ae3d3c609d732a17e71096779b2bf47b3a084320ffa93d9f9132786
MD5 7e337468ce57f906c2036d0043b91d57
BLAKE2b-256 e9abec003bb6ea2a487fcdae2e40e355579178afab4bfec9e4508de08e71b329

See more details on using hashes here.

File details

Details for the file numexpr-2.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4f0b045e1831953a47cc9fabae76a6794c69cbb60921751a5cf2d555034c55bf
MD5 5befb8541e4f982f95216b42a78f6458
BLAKE2b-256 828f8a151c40bf5b5713c2abc60a7cac66b285f75a3e61446b9cf96d6e26f406

See more details on using hashes here.

File details

Details for the file numexpr-2.10.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 83f1e7a7f7ee741b8dcd20c56c3f862a3a3ec26fa8b9fcadb7dcd819876d2f35
MD5 36ed6c8fa031875ef2b8926cab4fd20e
BLAKE2b-256 2ae356ce75c32c97fd40ddd5b5840814cc0bc72163e707dc3742ae7c4a43fbd5

See more details on using hashes here.

File details

Details for the file numexpr-2.10.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3c66dc0188358cdcc9465b6ee54fd5eef2e83ac64b1d4ba9117c41df59bf6fca
MD5 56a6328779e855aa4f405e6f38d7bd40
BLAKE2b-256 e5dc005e0b29b7aa51537e0565330133b64d77ae68d4b405fe7b8b0a628d0ffe

See more details on using hashes here.

File details

Details for the file numexpr-2.10.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1af6dc6b3bd2e11a802337b352bf58f30df0b70be16c4f863b70a3af3a8ef95e
MD5 144927006f60752ca81d6388b4cf8b40
BLAKE2b-256 024d5d43cfafee8d9591990baa3a417f920834070514f1713f762f2c99b753c5

See more details on using hashes here.

File details

Details for the file numexpr-2.10.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.10.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 97.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.8

File hashes

Hashes for numexpr-2.10.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 56d0d96b130f7cd4d78d0017030d6a0e9d9fc2a717ac51d4cf4860b39637e86a
MD5 22303d36a5ba5ad1487d33e40a4ae9c6
BLAKE2b-256 3112faee83b73ede33e48a055d897a0db32a0d2b9268f7af91e724e75cdcca12

See more details on using hashes here.

File details

Details for the file numexpr-2.10.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: numexpr-2.10.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 103.6 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.8

File hashes

Hashes for numexpr-2.10.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 04e8620e7e676504201d4082e7b3ee2d9b561d1cb9470b47a6104e10c1e2870e
MD5 743173f0e012c7d267d6744b7450519f
BLAKE2b-256 1d4f36cc0ab49ce39f71451e69c26a16a1145f040afc6a4ca60dfec847816367

See more details on using hashes here.

File details

Details for the file numexpr-2.10.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c7517b774d309b1f0896c89bdd1ddd33c4418a92ecfbe5e1df3ac698698f6fcf
MD5 6a74e7c1ed0dafefc38674a535fe3c3e
BLAKE2b-256 0d87e6046e9734070b7c51b3871693fb687244081a9ec7001582dfb917df3e38

See more details on using hashes here.

File details

Details for the file numexpr-2.10.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d47bb567e330ebe86781864219a36cbccb3a47aec893bd509f0139c6b23e8104
MD5 e5c44fff72a5a018ad5389676a196ba5
BLAKE2b-256 ae34e11dffd4cf404985e80bb3e29858e47246da8c20ed9198fd9bdd976f25e0

See more details on using hashes here.

File details

Details for the file numexpr-2.10.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 96a64d0dd8f8e694da3f8582d73d7da8446ff375f6dd239b546010efea371ac3
MD5 5c7cf514cde7068ec7ec8e056e32a765
BLAKE2b-256 36797ab72c40f33205bc72b1f189ab7f629df79e4f39f11ae3a0c3ec3b896e01

See more details on using hashes here.

File details

Details for the file numexpr-2.10.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 efa63ecdc9fcaf582045639ddcf56e9bdc1f4d9a01729be528f62df4db86c9d6
MD5 9bd0c5d9dd8b8c32b72192c1d0e13856
BLAKE2b-256 96ccfb3a6ded632da6f8111dbaed0b2ba4a86d84758de7a83d286517b6886b85

See more details on using hashes here.

File details

Details for the file numexpr-2.10.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.10.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dc3506c30c03b082da2cadef43747d474e5170c1f58a6dcdf882b3dc88b1e849
MD5 63fe5ae214dfb0d290591ec17c92b746
BLAKE2b-256 c45b4c6e3120ffcaaab9a376c1df2ab1a7da5e47b7706e239be7864a795cbbf0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page