Skip to main content

Fast numerical expression evaluator for NumPy

Project description

Author:

David M. Cooke, Francesc Alted and others

Contact:
faltet@gmail.com
URL:

https://github.com/pydata/numexpr

Documentation:

http://numexpr.readthedocs.io/en/latest/

Travis CI:

travis

Appveyor:

appveyor

PyPi:

version

readthedocs:

docs

What is NumExpr?

NumExpr is a fast numerical expression evaluator for NumPy. With it, expressions that operate on arrays (like '3*a+4*b') are accelerated and use less memory than doing the same calculation in Python.

In addition, its multi-threaded capabilities can make use of all your cores – which generally results in substantial performance scaling compared to NumPy.

Last but not least, numexpr can make use of Intel’s VML (Vector Math Library, normally integrated in its Math Kernel Library, or MKL). This allows further acceleration of transcendent expressions.

How NumExpr achieves high performance

The main reason why NumExpr achieves better performance than NumPy is that it avoids allocating memory for intermediate results. This results in better cache utilization and reduces memory access in general. Due to this, NumExpr works best with large arrays.

NumExpr parses expressions into its own op-codes that are then used by an integrated computing virtual machine. The array operands are split into small chunks that easily fit in the cache of the CPU and passed to the virtual machine. The virtual machine then applies the operations on each chunk. It’s worth noting that all temporaries and constants in the expression are also chunked. Chunks are distributed among the available cores of the CPU, resulting in highly parallelized code execution.

The result is that NumExpr can get the most of your machine computing capabilities for array-wise computations. Common speed-ups with regard to NumPy are usually between 0.95x (for very simple expressions like 'a + 1') and 4x (for relatively complex ones like 'a*b-4.1*a > 2.5*b'), although much higher speed-ups can be achieved for some functions and complex math operations (up to 15x in some cases).

NumExpr performs best on matrices that are too large to fit in L1 CPU cache. In order to get a better idea on the different speed-ups that can be achieved on your platform, run the provided benchmarks.

Usage

>>> import numpy as np
>>> import numexpr as ne

>>> a = np.arange(1e6)   # Choose large arrays for better speedups
>>> b = np.arange(1e6)

>>> ne.evaluate("a + 1")   # a simple expression
array([  1.00000000e+00,   2.00000000e+00,   3.00000000e+00, ...,
         9.99998000e+05,   9.99999000e+05,   1.00000000e+06])

>>> ne.evaluate('a*b-4.1*a > 2.5*b')   # a more complex one
array([False, False, False, ...,  True,  True,  True], dtype=bool)

>>> ne.evaluate("sin(a) + arcsinh(a/b)")   # you can also use functions
array([        NaN,  1.72284457,  1.79067101, ...,  1.09567006,
        0.17523598, -0.09597844])

>>> s = np.array(['abba', 'abbb', 'abbcdef'])
>>> ne.evaluate("'abba' == s")   # string arrays are supported too
array([ True, False, False], dtype=bool)

Documentation

Please see the official documentation at numexpr.readthedocs.io. Included is a user guide, benchmark results, and the reference API.

Authors

Please see AUTHORS.txt.

License

NumExpr is distributed under the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numexpr-2.6.7.tar.gz (93.9 kB view details)

Uploaded Source

Built Distributions

numexpr-2.6.7-cp37-cp37m-manylinux1_x86_64.whl (162.7 kB view details)

Uploaded CPython 3.7m

numexpr-2.6.7-cp37-cp37m-manylinux1_i686.whl (149.1 kB view details)

Uploaded CPython 3.7m

numexpr-2.6.7-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (181.0 kB view details)

Uploaded CPython 3.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numexpr-2.6.7-cp36-none-win_amd64.whl (91.2 kB view details)

Uploaded CPython 3.6 Windows x86-64

numexpr-2.6.7-cp36-none-win32.whl (89.8 kB view details)

Uploaded CPython 3.6 Windows x86

numexpr-2.6.7-cp36-cp36m-manylinux1_x86_64.whl (162.6 kB view details)

Uploaded CPython 3.6m

numexpr-2.6.7-cp36-cp36m-manylinux1_i686.whl (149.0 kB view details)

Uploaded CPython 3.6m

numexpr-2.6.7-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (181.0 kB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numexpr-2.6.7-cp35-none-win_amd64.whl (91.2 kB view details)

Uploaded CPython 3.5 Windows x86-64

numexpr-2.6.7-cp35-none-win32.whl (89.8 kB view details)

Uploaded CPython 3.5 Windows x86

numexpr-2.6.7-cp35-cp35m-manylinux1_x86_64.whl (162.6 kB view details)

Uploaded CPython 3.5m

numexpr-2.6.7-cp35-cp35m-manylinux1_i686.whl (149.0 kB view details)

Uploaded CPython 3.5m

numexpr-2.6.7-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (181.0 kB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numexpr-2.6.7-cp34-none-win_amd64.whl (87.1 kB view details)

Uploaded CPython 3.4 Windows x86-64

numexpr-2.6.7-cp34-none-win32.whl (88.2 kB view details)

Uploaded CPython 3.4 Windows x86

numexpr-2.6.7-cp34-cp34m-manylinux1_x86_64.whl (162.5 kB view details)

Uploaded CPython 3.4m

numexpr-2.6.7-cp34-cp34m-manylinux1_i686.whl (149.0 kB view details)

Uploaded CPython 3.4m

numexpr-2.6.7-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (180.9 kB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numexpr-2.6.7-cp27-none-win_amd64.whl (108.5 kB view details)

Uploaded CPython 2.7 Windows x86-64

numexpr-2.6.7-cp27-none-win32.whl (112.6 kB view details)

Uploaded CPython 2.7 Windows x86

numexpr-2.6.7-cp27-cp27mu-manylinux1_x86_64.whl (161.3 kB view details)

Uploaded CPython 2.7mu

numexpr-2.6.7-cp27-cp27mu-manylinux1_i686.whl (147.8 kB view details)

Uploaded CPython 2.7mu

numexpr-2.6.7-cp27-cp27m-manylinux1_x86_64.whl (161.3 kB view details)

Uploaded CPython 2.7m

numexpr-2.6.7-cp27-cp27m-manylinux1_i686.whl (147.8 kB view details)

Uploaded CPython 2.7m

numexpr-2.6.7-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (180.9 kB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file numexpr-2.6.7.tar.gz.

File metadata

  • Download URL: numexpr-2.6.7.tar.gz
  • Upload date:
  • Size: 93.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/3.6

File hashes

Hashes for numexpr-2.6.7.tar.gz
Algorithm Hash digest
SHA256 3d007946b6c042fc9feb1db52dd0847d2f9b7f3175ae0591476ea80dcd664771
MD5 f1e55edb958f9bea1137d0f89c336b22
BLAKE2b-256 51b10c23addec79f88c69dee23b5b36910f5c0b916e394e0bbcc07a271a83f91

See more details on using hashes here.

File details

Details for the file numexpr-2.6.7-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.6.7-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 162.7 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.2 requests-toolbelt/0.8.0 tqdm/4.19.5 CPython/3.6.4

File hashes

Hashes for numexpr-2.6.7-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 bec2d7345833a3824398e9907f4f1e3bb604ec27d1ff127e1c4f17a57420fe4d
MD5 baf80039e6d7ca36a9174004fe65da1d
BLAKE2b-256 4222f4b264950ab334c7d4a78b9f91ccf530e149aa1c1f0347c426ce77863285

See more details on using hashes here.

File details

Details for the file numexpr-2.6.7-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: numexpr-2.6.7-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 149.1 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.2 requests-toolbelt/0.8.0 tqdm/4.19.5 CPython/3.6.4

File hashes

Hashes for numexpr-2.6.7-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 b8ad69e86ccc47a6a474a3d6e8b937a0fc7ec1a542aac97b5b8246f012e13b4a
MD5 cd76436e3ba4fd75bc8aa53bb06b3ba5
BLAKE2b-256 2d881bbb9397ff625083a0f9f73b3214d090b27bf6890e15fb932d6d808b29f3

See more details on using hashes here.

File details

Details for the file numexpr-2.6.7-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.6.7-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 657ed978d5bf900a01b3277c8c84e98a23c8e44ac2ace2ff040e854877ef1f4b
MD5 2359d8080c7274201eb3cb95ba33bc0b
BLAKE2b-256 549c7f10abb574ef9f6c515fa3e364b55f79bf05375ac7ffd9a25507133fb9f9

See more details on using hashes here.

File details

Details for the file numexpr-2.6.7-cp36-none-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.6.7-cp36-none-win_amd64.whl
  • Upload date:
  • Size: 91.2 kB
  • Tags: CPython 3.6, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.7-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 f9062e3588091adba5b0b5430421190e4f82506ddf0c00f3ee514c17de92acfc
MD5 6bbb4284bfae93d1e9b265cd00b0977b
BLAKE2b-256 6ebd0a30b42611f3a0cf446ace15fbf178a81b357646597c8def72156dc6ca3b

See more details on using hashes here.

File details

Details for the file numexpr-2.6.7-cp36-none-win32.whl.

File metadata

  • Download URL: numexpr-2.6.7-cp36-none-win32.whl
  • Upload date:
  • Size: 89.8 kB
  • Tags: CPython 3.6, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.7-cp36-none-win32.whl
Algorithm Hash digest
SHA256 2a8f6f14dfdd01ce7621881a97cf9ee987a07e5473cf4f85b3bb417603aa0301
MD5 2fa9d229144d3f0df2e8f701dd2038a8
BLAKE2b-256 85737e3413259e7145c4ef62978996ee5fb5ccde6bb989b4d4580b6e42dd4a12

See more details on using hashes here.

File details

Details for the file numexpr-2.6.7-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.6.7-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 162.6 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.7-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 163a91fb03130420f8c08dbee36c958a5d994d0dc985ed9d7719d41ba10fb808
MD5 0367438ffe02f2b30f6c49bd3343b262
BLAKE2b-256 9b020c7ef3c6f267ed07ed0a13d1b64f970c9378e43e95a86f1bbd0331e80101

See more details on using hashes here.

File details

Details for the file numexpr-2.6.7-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: numexpr-2.6.7-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 149.0 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.7-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 d024e386270184a4f8e7736ec78cb8d048e6a61623bc3fb69809e2537de020ab
MD5 cac146205d2815d80baa5475f52abf5f
BLAKE2b-256 8fe571302a2851e79f2aafc1115947d385e56e7098e422629aba47a45059e26d

See more details on using hashes here.

File details

Details for the file numexpr-2.6.7-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.6.7-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 2f0e4b416853e4be27e3fb893b8c2db9b37d7f6d970727095a4eda68395b3aad
MD5 53f6b3f952d6f5d863d2ca8e29d298b5
BLAKE2b-256 8a2c42bbb092a5c6b25b78162e495366d630e9a51d31c757a9d8718f9adf3b9b

See more details on using hashes here.

File details

Details for the file numexpr-2.6.7-cp35-none-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.6.7-cp35-none-win_amd64.whl
  • Upload date:
  • Size: 91.2 kB
  • Tags: CPython 3.5, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.7-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 ce68f1294841b8b8da6bff568afa08aa03323bd4718cddd189eafa8999b0be6a
MD5 877c427679befd4c1359f5c432358969
BLAKE2b-256 77fdc02e1efd9cc0f97146741d93f103ef6ac7216a531558f2cc0d6b2bf45098

See more details on using hashes here.

File details

Details for the file numexpr-2.6.7-cp35-none-win32.whl.

File metadata

  • Download URL: numexpr-2.6.7-cp35-none-win32.whl
  • Upload date:
  • Size: 89.8 kB
  • Tags: CPython 3.5, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.7-cp35-none-win32.whl
Algorithm Hash digest
SHA256 c0ca3c0fe203091bb0a92be2b87d98fcf74e49e4ab11098b4f9189ceb58a6d8b
MD5 073e6fba207a2c3fbfe6d3e9b5e69c3e
BLAKE2b-256 850c52042c53880b67ee1f5bf575cd5c5e5c728fe98833e5344c55b19b63ec2b

See more details on using hashes here.

File details

Details for the file numexpr-2.6.7-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.6.7-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 162.6 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.7-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9554cf7808b1d962c37f75ca0b571ae0d6c6fac15ffdda0b5cea1d0ede737182
MD5 9f13093224f94e1828a3b5bd5c1b20f9
BLAKE2b-256 f324c96ebca2a356968a39964fc98fd2c791e485f2af0b63059d8199975f0cbe

See more details on using hashes here.

File details

Details for the file numexpr-2.6.7-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: numexpr-2.6.7-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 149.0 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.7-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 cb28ffb302aac1987bacc06c33aff9ad62e50619299d4560af6f043b2690a0bc
MD5 c2e852c55702f87b52447fdd5c332fb8
BLAKE2b-256 0ca77096bb3b6f26a1786db9332d43fd60667b3d69dbad1ae4ff7df535bfc49e

See more details on using hashes here.

File details

Details for the file numexpr-2.6.7-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.6.7-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 ea2bfe64526dba325750f9e3324037fab851ece13bdbf1a77cfb060a7a2a1db6
MD5 94068d58ad034f930cf6c5e7843cefcc
BLAKE2b-256 b4251744cf52c00b76a1127c3f25a41b8b5aec6f2310aef63825474665c5fa7c

See more details on using hashes here.

File details

Details for the file numexpr-2.6.7-cp34-none-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.6.7-cp34-none-win_amd64.whl
  • Upload date:
  • Size: 87.1 kB
  • Tags: CPython 3.4, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.7-cp34-none-win_amd64.whl
Algorithm Hash digest
SHA256 27b2958cf489fa664c3f18482a7533c2660248d59afab15f8f28304a3af25674
MD5 6456963f17524a30466f6fa8446303f9
BLAKE2b-256 4190148a5c137e4e2529e311c8cbf7c0776037e7b6dc3e9d318aa1537ce368b8

See more details on using hashes here.

File details

Details for the file numexpr-2.6.7-cp34-none-win32.whl.

File metadata

  • Download URL: numexpr-2.6.7-cp34-none-win32.whl
  • Upload date:
  • Size: 88.2 kB
  • Tags: CPython 3.4, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.7-cp34-none-win32.whl
Algorithm Hash digest
SHA256 f924935ea45a80140257c1e8685027efc7d9151d04f228151367fd2ba2d59b3b
MD5 9654c897c7f3d628e3fb529a963ef3f9
BLAKE2b-256 b11c8fcc29c86f28fea1065af42842ea40c553ee8dbb15b150ce249a27d1ea89

See more details on using hashes here.

File details

Details for the file numexpr-2.6.7-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.6.7-cp34-cp34m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 162.5 kB
  • Tags: CPython 3.4m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.7-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d0cb04f3deba243eddf8789ad280935e6e1aeb7bacd556c0add66320e27dc6d0
MD5 f564d9463a112c58fd1d40ab0f7af454
BLAKE2b-256 a67cd3f780e25c4995a523197a919f77d56fe0e82d0111fdfaaf785d74a8bd32

See more details on using hashes here.

File details

Details for the file numexpr-2.6.7-cp34-cp34m-manylinux1_i686.whl.

File metadata

  • Download URL: numexpr-2.6.7-cp34-cp34m-manylinux1_i686.whl
  • Upload date:
  • Size: 149.0 kB
  • Tags: CPython 3.4m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.7-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 b15d6b60db11ef87006692cb137950840cb1b29d0a74ee679cd20b396015d7c3
MD5 93a5ecabf41e5dc41ab61bfaad888165
BLAKE2b-256 d40b6647b4427dcfd38db249f58a4e2f5162fc71186dc02537c627fc0bc85f28

See more details on using hashes here.

File details

Details for the file numexpr-2.6.7-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.6.7-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 7a714b16d743f2ef5d95cb71df557758ebcaac1786082677fba23ca7c0af55f8
MD5 53e60121e97d8cdf3a2b35a71450a9b2
BLAKE2b-256 5e74d3bff1f5dbe0c1dc3b6c06f8df0cdcaaff3e466ae0107ddcbccbbb96d654

See more details on using hashes here.

File details

Details for the file numexpr-2.6.7-cp27-none-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.6.7-cp27-none-win_amd64.whl
  • Upload date:
  • Size: 108.5 kB
  • Tags: CPython 2.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.7-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 74da3ee589a50f9665137f84a87242396dd5b9bd842185935eba15f342ac2cbe
MD5 cc6f30f2262c974da539bc8775353d81
BLAKE2b-256 290268d47a0dc5119597a51205db17fc45ca1f55a3563766697056a80d9c9383

See more details on using hashes here.

File details

Details for the file numexpr-2.6.7-cp27-none-win32.whl.

File metadata

  • Download URL: numexpr-2.6.7-cp27-none-win32.whl
  • Upload date:
  • Size: 112.6 kB
  • Tags: CPython 2.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.7-cp27-none-win32.whl
Algorithm Hash digest
SHA256 e19a3817295a477e4d07a8e654ae7b80b37de4162ff7fefe82c81f012ffda93d
MD5 ab113fbd62325ad2c3afb4a145629248
BLAKE2b-256 18aa3ca5ce1962190f399fc362b97c00790d72496c02c2ae10b9366bae5d4de8

See more details on using hashes here.

File details

Details for the file numexpr-2.6.7-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.6.7-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 161.3 kB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.7-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 12cc83ff1b8a9ceb243d5ab4135eb073e39d95a83d8222bf5e5533335a093040
MD5 7e648862608a037b7cffbdc4566d91ab
BLAKE2b-256 34110f8ce5897fb52d3663a1adfb48ceb207ee185d1d4025f1b8c816061062fe

See more details on using hashes here.

File details

Details for the file numexpr-2.6.7-cp27-cp27mu-manylinux1_i686.whl.

File metadata

  • Download URL: numexpr-2.6.7-cp27-cp27mu-manylinux1_i686.whl
  • Upload date:
  • Size: 147.8 kB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.7-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 41a8dccf364cfa24a07df933c36e3e47c4e9b24b07f4c51a8d344cdbcde4d81d
MD5 143476a79543867d4c179293b7ed9681
BLAKE2b-256 da8d96b5e8b30c114e64c4f7bb47cc29a57331d00d314a71d4bc8143b0c586a3

See more details on using hashes here.

File details

Details for the file numexpr-2.6.7-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.6.7-cp27-cp27m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 161.3 kB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.7-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 99e34b941d75c8f12a54c9f7c91b797eabcc97218364ecb8e50de4bbf6214b9c
MD5 4f180bf773c68637c6e71b998a60dd22
BLAKE2b-256 01cb88abfa5ccaf1aea0effc6f9c4ecc3b2443c7910f2015db568f05ccb8c0b6

See more details on using hashes here.

File details

Details for the file numexpr-2.6.7-cp27-cp27m-manylinux1_i686.whl.

File metadata

  • Download URL: numexpr-2.6.7-cp27-cp27m-manylinux1_i686.whl
  • Upload date:
  • Size: 147.8 kB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.7-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 1adef5b64fcc00c72a22780274d0c59b596b9e6f43c01877fc4724280f17149e
MD5 a9b0f915eda469e8529e39e011e562cd
BLAKE2b-256 d3842494a421fa75145e87dfac38b96c3ade52309119b4e647515c647381cdcb

See more details on using hashes here.

File details

Details for the file numexpr-2.6.7-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.6.7-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 abf6e72eb237c8e68a556d1954a3b49617bd7721dcfaf0e989f0c71726556402
MD5 9a83d145d790743d3a9ef969efa45cf4
BLAKE2b-256 1e11f7b3343db71d01f4d4b9dfb968bc0b7d620933e3d2da52235ba66b520ba6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page