Skip to main content

Fast numerical expression evaluator for NumPy

Project description

Author:

David M. Cooke, Francesc Alted and others

Contact:
faltet@gmail.com
URL:

https://github.com/pydata/numexpr

Documentation:

http://numexpr.readthedocs.io/en/latest/

Travis CI:

travis

Appveyor:

appveyor

PyPi:

version

readthedocs:

docs

What is NumExpr?

NumExpr is a fast numerical expression evaluator for NumPy. With it, expressions that operate on arrays (like '3*a+4*b') are accelerated and use less memory than doing the same calculation in Python.

In addition, its multi-threaded capabilities can make use of all your cores – which generally results in substantial performance scaling compared to NumPy.

Last but not least, numexpr can make use of Intel’s VML (Vector Math Library, normally integrated in its Math Kernel Library, or MKL). This allows further acceleration of transcendent expressions.

How NumExpr achieves high performance

The main reason why NumExpr achieves better performance than NumPy is that it avoids allocating memory for intermediate results. This results in better cache utilization and reduces memory access in general. Due to this, NumExpr works best with large arrays.

NumExpr parses expressions into its own op-codes that are then used by an integrated computing virtual machine. The array operands are split into small chunks that easily fit in the cache of the CPU and passed to the virtual machine. The virtual machine then applies the operations on each chunk. It’s worth noting that all temporaries and constants in the expression are also chunked. Chunks are distributed among the available cores of the CPU, resulting in highly parallelized code execution.

The result is that NumExpr can get the most of your machine computing capabilities for array-wise computations. Common speed-ups with regard to NumPy are usually between 0.95x (for very simple expressions like 'a + 1') and 4x (for relatively complex ones like 'a*b-4.1*a > 2.5*b'), although much higher speed-ups can be achieved for some functions and complex math operations (up to 15x in some cases).

NumExpr performs best on matrices that are too large to fit in L1 CPU cache. In order to get a better idea on the different speed-ups that can be achieved on your platform, run the provided benchmarks.

Usage

>>> import numpy as np
>>> import numexpr as ne

>>> a = np.arange(1e6)   # Choose large arrays for better speedups
>>> b = np.arange(1e6)

>>> ne.evaluate("a + 1")   # a simple expression
array([  1.00000000e+00,   2.00000000e+00,   3.00000000e+00, ...,
         9.99998000e+05,   9.99999000e+05,   1.00000000e+06])

>>> ne.evaluate('a*b-4.1*a > 2.5*b')   # a more complex one
array([False, False, False, ...,  True,  True,  True], dtype=bool)

>>> ne.evaluate("sin(a) + arcsinh(a/b)")   # you can also use functions
array([        NaN,  1.72284457,  1.79067101, ...,  1.09567006,
        0.17523598, -0.09597844])

>>> s = np.array(['abba', 'abbb', 'abbcdef'])
>>> ne.evaluate("'abba' == s")   # string arrays are supported too
array([ True, False, False], dtype=bool)

Documentation

Please see the official documentation at numexpr.readthedocs.io. Included is a user guide, benchmark results, and the reference API.

Authors

Please see AUTHORS.txt.

License

NumExpr is distributed under the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numexpr-2.6.8.tar.gz (94.5 kB view details)

Uploaded Source

Built Distributions

numexpr-2.6.8-cp37-cp37m-manylinux1_x86_64.whl (163.1 kB view details)

Uploaded CPython 3.7m

numexpr-2.6.8-cp37-cp37m-manylinux1_i686.whl (149.5 kB view details)

Uploaded CPython 3.7m

numexpr-2.6.8-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (181.4 kB view details)

Uploaded CPython 3.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numexpr-2.6.8-cp36-none-win_amd64.whl (91.6 kB view details)

Uploaded CPython 3.6 Windows x86-64

numexpr-2.6.8-cp36-none-win32.whl (90.2 kB view details)

Uploaded CPython 3.6 Windows x86

numexpr-2.6.8-cp36-cp36m-manylinux1_x86_64.whl (163.0 kB view details)

Uploaded CPython 3.6m

numexpr-2.6.8-cp36-cp36m-manylinux1_i686.whl (149.4 kB view details)

Uploaded CPython 3.6m

numexpr-2.6.8-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (181.4 kB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numexpr-2.6.8-cp35-none-win_amd64.whl (91.6 kB view details)

Uploaded CPython 3.5 Windows x86-64

numexpr-2.6.8-cp35-none-win32.whl (90.2 kB view details)

Uploaded CPython 3.5 Windows x86

numexpr-2.6.8-cp35-cp35m-manylinux1_x86_64.whl (163.0 kB view details)

Uploaded CPython 3.5m

numexpr-2.6.8-cp35-cp35m-manylinux1_i686.whl (149.4 kB view details)

Uploaded CPython 3.5m

numexpr-2.6.8-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (181.4 kB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numexpr-2.6.8-cp34-none-win_amd64.whl (87.5 kB view details)

Uploaded CPython 3.4 Windows x86-64

numexpr-2.6.8-cp34-none-win32.whl (88.6 kB view details)

Uploaded CPython 3.4 Windows x86

numexpr-2.6.8-cp34-cp34m-manylinux1_x86_64.whl (162.9 kB view details)

Uploaded CPython 3.4m

numexpr-2.6.8-cp34-cp34m-manylinux1_i686.whl (149.4 kB view details)

Uploaded CPython 3.4m

numexpr-2.6.8-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (181.3 kB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numexpr-2.6.8-cp27-none-win_amd64.whl (108.9 kB view details)

Uploaded CPython 2.7 Windows x86-64

numexpr-2.6.8-cp27-none-win32.whl (113.0 kB view details)

Uploaded CPython 2.7 Windows x86

numexpr-2.6.8-cp27-cp27mu-manylinux1_x86_64.whl (161.7 kB view details)

Uploaded CPython 2.7mu

numexpr-2.6.8-cp27-cp27mu-manylinux1_i686.whl (148.2 kB view details)

Uploaded CPython 2.7mu

numexpr-2.6.8-cp27-cp27m-manylinux1_x86_64.whl (161.7 kB view details)

Uploaded CPython 2.7m

numexpr-2.6.8-cp27-cp27m-manylinux1_i686.whl (148.2 kB view details)

Uploaded CPython 2.7m

numexpr-2.6.8-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (181.3 kB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file numexpr-2.6.8.tar.gz.

File metadata

  • Download URL: numexpr-2.6.8.tar.gz
  • Upload date:
  • Size: 94.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/3.6

File hashes

Hashes for numexpr-2.6.8.tar.gz
Algorithm Hash digest
SHA256 ee8bc7201aa2f1962c67d27c326a11eef9df887d7b87b1278a1d4e722bf44375
MD5 8148ba96476e2c367292789bc2a90d85
BLAKE2b-256 e7ca91e371dee889ba0f166c55a612684be8c2b19cf224340f5242484bbf8f64

See more details on using hashes here.

File details

Details for the file numexpr-2.6.8-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.6.8-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 163.1 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.8-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7419c43f1b22d3cd282480d753242588b2a0f449c6429f0999a2eebe0e5d7426
MD5 f21e404bf553f6ee53a5486a12187735
BLAKE2b-256 d118fc1611fd06e83c04e680e1f99060f9c2073a3b34286a87b917f0c025729b

See more details on using hashes here.

File details

Details for the file numexpr-2.6.8-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: numexpr-2.6.8-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 149.5 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.8-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 d304f4bfe69ca3e81a992a90c2a0e53c7fbc82769eedff32db8204496e223bbc
MD5 0573593e5477d684f453cb2a5bf442ba
BLAKE2b-256 c404729df2fbde5b227ac7c29d8b20f9114ce616ab3ff24fe18d0857057a656b

See more details on using hashes here.

File details

Details for the file numexpr-2.6.8-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.6.8-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 4ddec358f5082ea941bb316a6aa1fec068dea6f7ed1f60a1089b03340c1f58af
MD5 ea3db6465f1078c2b23662c231bb71c0
BLAKE2b-256 58df40d3c6b15a1f9b871f7fb0406e426c507f0eddf52e71c2609a220ccba84c

See more details on using hashes here.

File details

Details for the file numexpr-2.6.8-cp36-none-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.6.8-cp36-none-win_amd64.whl
  • Upload date:
  • Size: 91.6 kB
  • Tags: CPython 3.6, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.8-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 7bde656a67ce5368cf1d748c569d0132baf9813c45860b872f3a35294067c1e4
MD5 ed28ba9b6faa429a0911fd22e53f66db
BLAKE2b-256 321b37a3dc31ae0b2aa473e24235fbe0d09515790f7f49bfda5cf2308670ddca

See more details on using hashes here.

File details

Details for the file numexpr-2.6.8-cp36-none-win32.whl.

File metadata

  • Download URL: numexpr-2.6.8-cp36-none-win32.whl
  • Upload date:
  • Size: 90.2 kB
  • Tags: CPython 3.6, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.8-cp36-none-win32.whl
Algorithm Hash digest
SHA256 0a14dff7e893dd21f299993a6107437c2c7dd37a8aeb51933a8c0ff33ed1e036
MD5 8b0d1d2d77f3528da16946477ab79bc9
BLAKE2b-256 ce5f71934f088d6993720a58b42690b1898441fdf4609e7f00759804c7ee3284

See more details on using hashes here.

File details

Details for the file numexpr-2.6.8-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.6.8-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 163.0 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.8-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 21a9ea646a76b8fe98ac1e1fcd914c03addd3e4aa7feb040bc462b274a47b2cf
MD5 4a7afad17e175b3803453154497d93ee
BLAKE2b-256 dbeaefd9e16283637eb5b6c0042b6cc3521f1b9a5b47767ac463c88bbd37670c

See more details on using hashes here.

File details

Details for the file numexpr-2.6.8-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: numexpr-2.6.8-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 149.4 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.8-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 58349f46670aa4d1cef14f9c794dda307bf8578d383c7e602fe36de112f6afa0
MD5 07452a9789975f5c0a25ab7c8886ea15
BLAKE2b-256 06946ea7a0bbeedaf2f9ece84635ade45eb07871be6c461eea631636b91b9d96

See more details on using hashes here.

File details

Details for the file numexpr-2.6.8-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.6.8-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 ed2c841e3ced875c34abc89987f5203fce53e563341e4f4b2ac615b419412f37
MD5 ba7a3ef1621a87521583761264c6043f
BLAKE2b-256 53e44ea4e519ddbf8b2c26edccfba6a6011419208044c07f8e4f01b3fb3028ba

See more details on using hashes here.

File details

Details for the file numexpr-2.6.8-cp35-none-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.6.8-cp35-none-win_amd64.whl
  • Upload date:
  • Size: 91.6 kB
  • Tags: CPython 3.5, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.8-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 edc4af30bbe504946d036ad9f2c849ff2c8a837d8df2c7f9f0b7d8497e982743
MD5 ea4234eef1f71164534cf6f936da69aa
BLAKE2b-256 9d9cecd0e99a8dff1ff0d1b63867e3ee5ebd99dc36fe208c40522c225f8f2973

See more details on using hashes here.

File details

Details for the file numexpr-2.6.8-cp35-none-win32.whl.

File metadata

  • Download URL: numexpr-2.6.8-cp35-none-win32.whl
  • Upload date:
  • Size: 90.2 kB
  • Tags: CPython 3.5, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.8-cp35-none-win32.whl
Algorithm Hash digest
SHA256 618e4058e6a707007aebbf74c37d8156ac0c26870dd6b8495678ba3fd9aaef79
MD5 446e8e3e88dc2feb5e624d49aa2df53d
BLAKE2b-256 97265001a5b41c338a54c71195c8bd6a9d9ddbf7e8247cc71f2635abef860d92

See more details on using hashes here.

File details

Details for the file numexpr-2.6.8-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.6.8-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 163.0 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.8-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 53f50dbbd1d41c7ae33bf6811f0a4a6a333ae592baf218e257c9e32190235cba
MD5 387dfbda0f94cdeeaa36c05673afb4a6
BLAKE2b-256 0e5bf26e64e96dbd8e17f6768bc711096e83777ed057b2ffc663a8f61d02e1a8

See more details on using hashes here.

File details

Details for the file numexpr-2.6.8-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: numexpr-2.6.8-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 149.4 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.8-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 1374c5a996d1e48c64b26fad48fe2540c41f10436fbbe35cca61f35c57bcaeab
MD5 1b3b7909e96d4f8be4d045f7c7a6c9fe
BLAKE2b-256 e17db555c080df3f991eeba457b0f5569b83d52228c68ce0716e754e0b4a4ac7

See more details on using hashes here.

File details

Details for the file numexpr-2.6.8-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.6.8-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 11f215d739495f3c88c9cdd84f0b7ee27b5c1d4348df9b16854933d8165a1f7b
MD5 dda4de029146cd6aa2c26525ab21db98
BLAKE2b-256 30561a66688e9e8c3f2318063f4fa97d9008e30c0c4a25bb2ba83ac77701c4aa

See more details on using hashes here.

File details

Details for the file numexpr-2.6.8-cp34-none-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.6.8-cp34-none-win_amd64.whl
  • Upload date:
  • Size: 87.5 kB
  • Tags: CPython 3.4, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.8-cp34-none-win_amd64.whl
Algorithm Hash digest
SHA256 2a05c3c6342b0c1416cb3e8eecaee5ce9387917781afc1a5d5c5f93f546b3735
MD5 0427d99d8f42dc507f22189a6bafaba9
BLAKE2b-256 474975ed615560ff3eb93eeb378ae3de9979272cc37f3aa29dc7c42021098a2e

See more details on using hashes here.

File details

Details for the file numexpr-2.6.8-cp34-none-win32.whl.

File metadata

  • Download URL: numexpr-2.6.8-cp34-none-win32.whl
  • Upload date:
  • Size: 88.6 kB
  • Tags: CPython 3.4, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.8-cp34-none-win32.whl
Algorithm Hash digest
SHA256 9415b24d6f79528ef85be3afe7871e0f49ae2bbe28cc9cb0272db4edd136e443
MD5 66ce8d07f6a37bf4b01173a2512d7ee7
BLAKE2b-256 fc6d915a02b10cbfe15ec6e08f079a5c517b1b364afccff10d75d3e5c30a2788

See more details on using hashes here.

File details

Details for the file numexpr-2.6.8-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.6.8-cp34-cp34m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 162.9 kB
  • Tags: CPython 3.4m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.8-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 34e4381246893ac27c21c39356ef27ab7176d326f5a86b05486718f1f505f794
MD5 009d884805b9bf384728fe0b9dc26260
BLAKE2b-256 e00a444ef126be9347b5bfaed8b9a2abe39546313ce9ed084a865c67f7309c11

See more details on using hashes here.

File details

Details for the file numexpr-2.6.8-cp34-cp34m-manylinux1_i686.whl.

File metadata

  • Download URL: numexpr-2.6.8-cp34-cp34m-manylinux1_i686.whl
  • Upload date:
  • Size: 149.4 kB
  • Tags: CPython 3.4m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.8-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 9e292c060172f415888fb36f50fd2d4688797f66ec11eb9fbc33666cacbd5f68
MD5 2adca523bed15afba60151baf8443b85
BLAKE2b-256 a4a51f7ca2de87ff91b1bb0b5c1e9d0857fdc680bddd0e61e51df071cfe9d19e

See more details on using hashes here.

File details

Details for the file numexpr-2.6.8-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.6.8-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 ae5dae4d34fc57c47167a7c79603f9592da504fc077833afc259451bc29cec4c
MD5 26182b53d59d00e5b86ca2b9ff2e1573
BLAKE2b-256 b1942ca2f3fe6c21c9f6e7a02e82594e77bdf92b35225fafbf60377c38170357

See more details on using hashes here.

File details

Details for the file numexpr-2.6.8-cp27-none-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.6.8-cp27-none-win_amd64.whl
  • Upload date:
  • Size: 108.9 kB
  • Tags: CPython 2.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.8-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 3d1f2123d385e3790fc9f650950a79aaaa9ac62f8455bd9451263d29f37924f2
MD5 6528e78276a99a088715e20f4640ab8e
BLAKE2b-256 6ad61e828d1fe193931a7b4f05643c0b2c08f6ab2c72b7690d1e0a6f1da7764f

See more details on using hashes here.

File details

Details for the file numexpr-2.6.8-cp27-none-win32.whl.

File metadata

  • Download URL: numexpr-2.6.8-cp27-none-win32.whl
  • Upload date:
  • Size: 113.0 kB
  • Tags: CPython 2.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.8-cp27-none-win32.whl
Algorithm Hash digest
SHA256 e5456df5fabcd02f08aa06f0f61eee682649bd5e033ac7319f91a9f9c1d4d1c3
MD5 11d1756ceff9024ed1a9a2d96c336032
BLAKE2b-256 f10ccc5378e66fe4371d27f79719afdbb99cd8b54c6384caeb9dd1a78f88f922

See more details on using hashes here.

File details

Details for the file numexpr-2.6.8-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.6.8-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 161.7 kB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.8-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 90cc7b1e051a57386d9b3125506a1a2f320964e017a9a5ce78a055b99e826ceb
MD5 d5eae71837b54ec9d1d404936fd17b69
BLAKE2b-256 0db89cce4b669e22ea04e876cfaac87a971bb5363e21be2738a11b1901937dd4

See more details on using hashes here.

File details

Details for the file numexpr-2.6.8-cp27-cp27mu-manylinux1_i686.whl.

File metadata

  • Download URL: numexpr-2.6.8-cp27-cp27mu-manylinux1_i686.whl
  • Upload date:
  • Size: 148.2 kB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.8-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 21c05fb3ee1be0ff3be0d6ef572bf0e5dad27bf5d90c067e1580127340e36e2d
MD5 325c3e447000a957002146ee090582ce
BLAKE2b-256 909819fbb1699521d336e1dd0c796830f9c8f3b7b5037a9e0e91c491a446c405

See more details on using hashes here.

File details

Details for the file numexpr-2.6.8-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.6.8-cp27-cp27m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 161.7 kB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.8-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 bf62d6fa0453cec848c91179857a46e84f0812881d9bdfa29cda0672e599c9a5
MD5 8a2e9aee4ebdcd605117dfdb76147f42
BLAKE2b-256 4a77c1855eae58e7059a255ecf6f540c05dff7dcbe595bd7789c40fbc7099edd

See more details on using hashes here.

File details

Details for the file numexpr-2.6.8-cp27-cp27m-manylinux1_i686.whl.

File metadata

  • Download URL: numexpr-2.6.8-cp27-cp27m-manylinux1_i686.whl
  • Upload date:
  • Size: 148.2 kB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.8-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 e83bd5e6e424cf0a6e7d9de97d4ecd2d978eed478104f4c65496b8ea7d148268
MD5 69295ad7ed838f51476e0d3106900022
BLAKE2b-256 318cdc95b70dcb77a56fd980f5cbd9e5e63e76388c9c3380f47e3b6d2d036734

See more details on using hashes here.

File details

Details for the file numexpr-2.6.8-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.6.8-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 5fc41e3652c7154ee5767a99b3fd72d81c3b01df364c42ccd2e89926c8fbbda5
MD5 859888c5111c92ca175db9b62c787f0e
BLAKE2b-256 51ccd4f08dde67cdb80ec1132653d6deaf212721c3531631ebfd9d0741b8ad98

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page