Skip to main content

Fast numerical expression evaluator for NumPy

Project description

Author:

David M. Cooke, Francesc Alted and others

Contact:
faltet@gmail.com
URL:

https://github.com/pydata/numexpr

Documentation:

http://numexpr.readthedocs.io/en/latest/

Travis CI:

travis

Appveyor:

appveyor

PyPi:

version

DOI:

doi

readthedocs:

docs

What is NumExpr?

NumExpr is a fast numerical expression evaluator for NumPy. With it, expressions that operate on arrays (like '3*a+4*b') are accelerated and use less memory than doing the same calculation in Python.

In addition, its multi-threaded capabilities can make use of all your cores – which generally results in substantial performance scaling compared to NumPy.

Last but not least, numexpr can make use of Intel’s VML (Vector Math Library, normally integrated in its Math Kernel Library, or MKL). This allows further acceleration of transcendent expressions.

How NumExpr achieves high performance

The main reason why NumExpr achieves better performance than NumPy is that it avoids allocating memory for intermediate results. This results in better cache utilization and reduces memory access in general. Due to this, NumExpr works best with large arrays.

NumExpr parses expressions into its own op-codes that are then used by an integrated computing virtual machine. The array operands are split into small chunks that easily fit in the cache of the CPU and passed to the virtual machine. The virtual machine then applies the operations on each chunk. It’s worth noting that all temporaries and constants in the expression are also chunked. Chunks are distributed among the available cores of the CPU, resulting in highly parallelized code execution.

The result is that NumExpr can get the most of your machine computing capabilities for array-wise computations. Common speed-ups with regard to NumPy are usually between 0.95x (for very simple expressions like 'a + 1') and 4x (for relatively complex ones like 'a*b-4.1*a > 2.5*b'), although much higher speed-ups can be achieved for some functions and complex math operations (up to 15x in some cases).

NumExpr performs best on matrices that are too large to fit in L1 CPU cache. In order to get a better idea on the different speed-ups that can be achieved on your platform, run the provided benchmarks.

Usage

>>> import numpy as np
>>> import numexpr as ne

>>> a = np.arange(1e6)   # Choose large arrays for better speedups
>>> b = np.arange(1e6)

>>> ne.evaluate("a + 1")   # a simple expression
array([  1.00000000e+00,   2.00000000e+00,   3.00000000e+00, ...,
         9.99998000e+05,   9.99999000e+05,   1.00000000e+06])

>>> ne.evaluate('a*b-4.1*a > 2.5*b')   # a more complex one
array([False, False, False, ...,  True,  True,  True], dtype=bool)

>>> ne.evaluate("sin(a) + arcsinh(a/b)")   # you can also use functions
array([        NaN,  1.72284457,  1.79067101, ...,  1.09567006,
        0.17523598, -0.09597844])

>>> s = np.array(['abba', 'abbb', 'abbcdef'])
>>> ne.evaluate("'abba' == s")   # string arrays are supported too
array([ True, False, False], dtype=bool)

Documentation

Please see the official documentation at numexpr.readthedocs.io. Included is a user guide, benchmark results, and the reference API.

Authors

Please see AUTHORS.txt.

License

NumExpr is distributed under the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numexpr-2.6.9.tar.gz (94.4 kB view details)

Uploaded Source

Built Distributions

numexpr-2.6.9-cp37-none-win_amd64.whl (91.9 kB view details)

Uploaded CPython 3.7 Windows x86-64

numexpr-2.6.9-cp37-none-win32.whl (90.4 kB view details)

Uploaded CPython 3.7 Windows x86

numexpr-2.6.9-cp37-cp37m-manylinux1_x86_64.whl (163.2 kB view details)

Uploaded CPython 3.7m

numexpr-2.6.9-cp37-cp37m-manylinux1_i686.whl (149.6 kB view details)

Uploaded CPython 3.7m

numexpr-2.6.9-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (183.1 kB view details)

Uploaded CPython 3.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numexpr-2.6.9-cp36-none-win_amd64.whl (91.9 kB view details)

Uploaded CPython 3.6 Windows x86-64

numexpr-2.6.9-cp36-none-win32.whl (90.4 kB view details)

Uploaded CPython 3.6 Windows x86

numexpr-2.6.9-cp36-cp36m-manylinux1_x86_64.whl (163.0 kB view details)

Uploaded CPython 3.6m

numexpr-2.6.9-cp36-cp36m-manylinux1_i686.whl (149.5 kB view details)

Uploaded CPython 3.6m

numexpr-2.6.9-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (183.0 kB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numexpr-2.6.9-cp35-none-win_amd64.whl (91.9 kB view details)

Uploaded CPython 3.5 Windows x86-64

numexpr-2.6.9-cp35-none-win32.whl (90.4 kB view details)

Uploaded CPython 3.5 Windows x86

numexpr-2.6.9-cp35-cp35m-manylinux1_x86_64.whl (163.1 kB view details)

Uploaded CPython 3.5m

numexpr-2.6.9-cp35-cp35m-manylinux1_i686.whl (149.5 kB view details)

Uploaded CPython 3.5m

numexpr-2.6.9-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (183.0 kB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numexpr-2.6.9-cp34-none-win_amd64.whl (87.8 kB view details)

Uploaded CPython 3.4 Windows x86-64

numexpr-2.6.9-cp34-none-win32.whl (88.9 kB view details)

Uploaded CPython 3.4 Windows x86

numexpr-2.6.9-cp34-cp34m-manylinux1_x86_64.whl (163.0 kB view details)

Uploaded CPython 3.4m

numexpr-2.6.9-cp34-cp34m-manylinux1_i686.whl (149.4 kB view details)

Uploaded CPython 3.4m

numexpr-2.6.9-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (182.9 kB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numexpr-2.6.9-cp27-none-win_amd64.whl (109.1 kB view details)

Uploaded CPython 2.7 Windows x86-64

numexpr-2.6.9-cp27-none-win32.whl (113.2 kB view details)

Uploaded CPython 2.7 Windows x86

numexpr-2.6.9-cp27-cp27mu-manylinux1_x86_64.whl (161.8 kB view details)

Uploaded CPython 2.7mu

numexpr-2.6.9-cp27-cp27mu-manylinux1_i686.whl (148.2 kB view details)

Uploaded CPython 2.7mu

numexpr-2.6.9-cp27-cp27m-manylinux1_x86_64.whl (161.8 kB view details)

Uploaded CPython 2.7m

numexpr-2.6.9-cp27-cp27m-manylinux1_i686.whl (148.2 kB view details)

Uploaded CPython 2.7m

numexpr-2.6.9-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (182.9 kB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file numexpr-2.6.9.tar.gz.

File metadata

  • Download URL: numexpr-2.6.9.tar.gz
  • Upload date:
  • Size: 94.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/3.6

File hashes

Hashes for numexpr-2.6.9.tar.gz
Algorithm Hash digest
SHA256 fc218b777cdbb14fa8cff8f28175ee631bacabbdd41ca34e061325b6c44a6fa6
MD5 01107538b4769b09a12994587b88ccb4
BLAKE2b-256 82a042e0f42d79e0db81e78424828dee1aea08a06da66c2bc06068742e9b860f

See more details on using hashes here.

File details

Details for the file numexpr-2.6.9-cp37-none-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.6.9-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 91.9 kB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.9-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 7f4e121bd59f3b5f7bbd9ca8873c815277c4994b22cfff8a7d57bdef9d00e939
MD5 0c1b99d4a9941b19f3a0a81465f6c71f
BLAKE2b-256 3dea2da288c443310107f55ffaaf6afce6f7906692b00ccb7b787d0ba230f3f4

See more details on using hashes here.

File details

Details for the file numexpr-2.6.9-cp37-none-win32.whl.

File metadata

  • Download URL: numexpr-2.6.9-cp37-none-win32.whl
  • Upload date:
  • Size: 90.4 kB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.9-cp37-none-win32.whl
Algorithm Hash digest
SHA256 ecb0d0a1ac843f2b8c7afdc0c3ec4fcfcc275bbd0750065cc4112fcd14904c90
MD5 82a8be283161cdc582f0e54a04e67643
BLAKE2b-256 57fa42bd32b268f4a724550b2e5979c97e2643c85485aa5a4dcce13a67f42b95

See more details on using hashes here.

File details

Details for the file numexpr-2.6.9-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.6.9-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 163.2 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.9-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4b65fe1b4565ccaab7a3617da1bd046987fb7dbc0bbe34e56aa08b05857259d1
MD5 78be4aef708607c051747f6d6997b405
BLAKE2b-256 020bd2c3ed7d16e5efac6832b88b8fb3b5eacd47babaedf7bcc72255debf4ae8

See more details on using hashes here.

File details

Details for the file numexpr-2.6.9-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: numexpr-2.6.9-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 149.6 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.9-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 9ef58b5f8debcf0c573968f44709866210696aa476b0d22d9afe88da2bd70add
MD5 7705b8f80a1d90088a3abd8474784bbe
BLAKE2b-256 b23abb43f5b2a788c8891a8cf5c252f65649cd8e0d135594ea49e4edfadff089

See more details on using hashes here.

File details

Details for the file numexpr-2.6.9-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.6.9-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 426053be016a3584a10cae13f18692938ff7314988f69edd367b4ff60b370b5b
MD5 b746abf3ee99da7effac30680405a3e3
BLAKE2b-256 713b81472cf68cb8fa28cfd1f6ea2b55d912201f344afbcb9672437ff4966c12

See more details on using hashes here.

File details

Details for the file numexpr-2.6.9-cp36-none-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.6.9-cp36-none-win_amd64.whl
  • Upload date:
  • Size: 91.9 kB
  • Tags: CPython 3.6, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.9-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 47c205a2bca8477eaaa766ca2b86001ca0df4b61ae407196a3ba2420932b5dca
MD5 d92532c19d551020300d106e324acd86
BLAKE2b-256 f72ded626045f9e4c17fb6c2dea95a50b6e484427e5d324b6a0c4c53be1a4ddb

See more details on using hashes here.

File details

Details for the file numexpr-2.6.9-cp36-none-win32.whl.

File metadata

  • Download URL: numexpr-2.6.9-cp36-none-win32.whl
  • Upload date:
  • Size: 90.4 kB
  • Tags: CPython 3.6, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.9-cp36-none-win32.whl
Algorithm Hash digest
SHA256 6b70a0c372bb567ddb3039d046cccede284cee2a43688010a4110f6b2fe59421
MD5 4c90d609bfca731527b14d223400d361
BLAKE2b-256 2b5e313a2de93ab1395bd963429ce1d036634adf8f9e7212076162ce6fc701f4

See more details on using hashes here.

File details

Details for the file numexpr-2.6.9-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.6.9-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 163.0 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.9-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 37b04292cbb1e20bfb3428d5aeebe2bdd13368d458e508998087e40b68d8cc95
MD5 feee36992feffccd07202d7972a809a8
BLAKE2b-256 0e13d38d56c4c49e50b35b6912c80d89f856d50aff605c9e3a4dbba91fc3df44

See more details on using hashes here.

File details

Details for the file numexpr-2.6.9-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: numexpr-2.6.9-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 149.5 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.9-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 9c6b4dfcc978ad50a72f83fbaf0fe4706088f3b2623e365bc05036db4948e15d
MD5 d8695be22db4bf2676a42b879a8b639e
BLAKE2b-256 056f99f87960cc75ba19ed7a6227e5df8618e6b5ac63f13f75c9e62cee7795aa

See more details on using hashes here.

File details

Details for the file numexpr-2.6.9-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.6.9-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 5fe05f123e00170370c759734c395e5a4ae0ad4e6a3d370fd73e0dcd6669e665
MD5 b6ed1c59f655f59ed80cadea4e6302d2
BLAKE2b-256 a42c71676625624fe67b8ea2236455ceaed634bcef995bbe250f014c5d9508fd

See more details on using hashes here.

File details

Details for the file numexpr-2.6.9-cp35-none-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.6.9-cp35-none-win_amd64.whl
  • Upload date:
  • Size: 91.9 kB
  • Tags: CPython 3.5, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.9-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 eac513cd2424c5f1b2c75bcb06402da407d74bb6f72584d599218228060c2468
MD5 7074ee3ddc2254afce042cf7ccf61ea4
BLAKE2b-256 7162e4b49abfc8072a89871b1534f572978dba5185e616765d9c33dd82326928

See more details on using hashes here.

File details

Details for the file numexpr-2.6.9-cp35-none-win32.whl.

File metadata

  • Download URL: numexpr-2.6.9-cp35-none-win32.whl
  • Upload date:
  • Size: 90.4 kB
  • Tags: CPython 3.5, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.9-cp35-none-win32.whl
Algorithm Hash digest
SHA256 5839cd5f95b4088659cc5f6d25936c6a03a75c23be37f94a2885db0f6f234531
MD5 3162e51d9e4859f6a24d3f2312de1312
BLAKE2b-256 0f651d4593693d67269dedfb0803a5f6ff0f168ecc2b33df94fc4be3a48755fc

See more details on using hashes here.

File details

Details for the file numexpr-2.6.9-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.6.9-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 163.1 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.9-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 62d2853df0233fc04374679de20f39b93fdb7a664a0ee403fdb8e722328c5d4d
MD5 1d4a6f97a6dcc3a48a4355468af531f0
BLAKE2b-256 f458938d0f020e73eaf867d6fa89c236a6d5f3b8415fb1dff2b4f57adbd99f95

See more details on using hashes here.

File details

Details for the file numexpr-2.6.9-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: numexpr-2.6.9-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 149.5 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.9-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 e99213c7fa5ffd5572afe065bab7a8507d750221e3fbba43fc15151056d108a1
MD5 0fc058860cba6c4d2b42d2ef2cbb4cfc
BLAKE2b-256 e24d12f692293919544c65419cc39e2c2d2823ca33a2e2210556d25e9cafba94

See more details on using hashes here.

File details

Details for the file numexpr-2.6.9-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.6.9-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 ed96bc38a37fc34406ef76595235e5966d7d3a4123018e9a91d1b7307b4af425
MD5 c898870ca95605aa9b82e0fa88579de7
BLAKE2b-256 492a91e400f22afe08c52d37154d617acad6f8abf899a505b492e2dd842aabeb

See more details on using hashes here.

File details

Details for the file numexpr-2.6.9-cp34-none-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.6.9-cp34-none-win_amd64.whl
  • Upload date:
  • Size: 87.8 kB
  • Tags: CPython 3.4, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.9-cp34-none-win_amd64.whl
Algorithm Hash digest
SHA256 a64bfd49359df8f87c34ed601ce857213d8678e314d8c99b972b36e35ff8f98f
MD5 b1fe553e3220a302ad6f3d4406b2a3d9
BLAKE2b-256 8160afc66d3b3b609ba9d717139cbc993095ff5356237c56359a3b65a170f172

See more details on using hashes here.

File details

Details for the file numexpr-2.6.9-cp34-none-win32.whl.

File metadata

  • Download URL: numexpr-2.6.9-cp34-none-win32.whl
  • Upload date:
  • Size: 88.9 kB
  • Tags: CPython 3.4, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.9-cp34-none-win32.whl
Algorithm Hash digest
SHA256 08196ac987324dc02147abcf1883b192aa5cd1a56a07c725310f1d0d703d5301
MD5 149a2438cb3d0c5696ad614842ae7efc
BLAKE2b-256 1ecfaa33d73d548bc64fc4e06708dd9eef0ab42985178bec76163580473b2f34

See more details on using hashes here.

File details

Details for the file numexpr-2.6.9-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.6.9-cp34-cp34m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 163.0 kB
  • Tags: CPython 3.4m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.9-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 aa5b238af8f2915b39374d764ec0daa3d0a975a798f162c3ca30f1cd9fa9a274
MD5 161b029bb74e8046e619098a04b20094
BLAKE2b-256 5bf75ab2aa156ab3c989cd3d8b06cb91dc9bb9222150650abb572dbd49faf7af

See more details on using hashes here.

File details

Details for the file numexpr-2.6.9-cp34-cp34m-manylinux1_i686.whl.

File metadata

  • Download URL: numexpr-2.6.9-cp34-cp34m-manylinux1_i686.whl
  • Upload date:
  • Size: 149.4 kB
  • Tags: CPython 3.4m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.9-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 97920e6c37553571ce55f951080d9e2b28589c1337c3788b5ae66dae3a0131d2
MD5 3895660cfecd4695f3c1323826ee95ee
BLAKE2b-256 939471ddbad83a34d865f9cff39dd89ceb354bda242c09f9afa71129e0e504ba

See more details on using hashes here.

File details

Details for the file numexpr-2.6.9-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.6.9-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 ae5c73f7412b7e70c88f6b384ad61e123d909b0c81a8d5edd33239eb9b5b3111
MD5 67868c8b43e98a546c19cd0b8c2f931b
BLAKE2b-256 4785d25ed2d83d1bd5bd0b999da1aed2451dff1a308865f18d33be4e3f4fb821

See more details on using hashes here.

File details

Details for the file numexpr-2.6.9-cp27-none-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.6.9-cp27-none-win_amd64.whl
  • Upload date:
  • Size: 109.1 kB
  • Tags: CPython 2.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.9-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 6a0470a6c07eaa6aa27affb9ee89ce91070747e44172870b020fd3ebe318950a
MD5 f6f5dab60b764035bdae6b1aa2261916
BLAKE2b-256 e0bf38ee547a47014cba7ec6e668f53fa1cdfcf2f24e7a275732f7a5fcaaf7e8

See more details on using hashes here.

File details

Details for the file numexpr-2.6.9-cp27-none-win32.whl.

File metadata

  • Download URL: numexpr-2.6.9-cp27-none-win32.whl
  • Upload date:
  • Size: 113.2 kB
  • Tags: CPython 2.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.9-cp27-none-win32.whl
Algorithm Hash digest
SHA256 c3850466765b9b374ff2ff40974a7b4b278b875f94314e038043f534aff8e139
MD5 cee4b1a4b2b2575f6fcac13cc79d635f
BLAKE2b-256 0f4980922e8ab8293c25effea34246a40942eb44f2ad2371e0adeb72bf36b808

See more details on using hashes here.

File details

Details for the file numexpr-2.6.9-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.6.9-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 161.8 kB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.9-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9992ef8b9598a62364d46d4cb2f0f6285f4c77115f023dca821a50550044d8fc
MD5 399386b68f7e2cc04d32f18c3e1d4bc1
BLAKE2b-256 f9f2bb9ff01633f8834601a8090539dd0e22be562ba2fa9ea214513d7250e519

See more details on using hashes here.

File details

Details for the file numexpr-2.6.9-cp27-cp27mu-manylinux1_i686.whl.

File metadata

  • Download URL: numexpr-2.6.9-cp27-cp27mu-manylinux1_i686.whl
  • Upload date:
  • Size: 148.2 kB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.9-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 8213a3e84f3afadc0a4ab1fc0dab383482297f36dbf84b690bbe698b9b8c2ece
MD5 af338733398cac0a1aec790a7d064cdb
BLAKE2b-256 18900beb03784cd5211f20362d90566a70b307a01ff3b3b8ad6ff999858ce5a6

See more details on using hashes here.

File details

Details for the file numexpr-2.6.9-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.6.9-cp27-cp27m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 161.8 kB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.9-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 688a25cfcd7be6fcce3f6d59fffca6105541e7a1598144b545b633a266e94113
MD5 97d6eb90719ffb2859430611a100cb40
BLAKE2b-256 dc65e23f4deb0d0ee43cc8434d131965fb3e51cc75f96df5e505f3a5b88f35a0

See more details on using hashes here.

File details

Details for the file numexpr-2.6.9-cp27-cp27m-manylinux1_i686.whl.

File metadata

  • Download URL: numexpr-2.6.9-cp27-cp27m-manylinux1_i686.whl
  • Upload date:
  • Size: 148.2 kB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.6.9-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 ee4c526517d89f92c9b9f9c1937ab15c9e3d33864213b4488e1dd30fbc43c87f
MD5 1b117b077603ebd3f7077984e70c8b72
BLAKE2b-256 f1bbf3236ac41ead7be8c5aadee2f10f21fd151df8ec0dd6d0a6643a330b674f

See more details on using hashes here.

File details

Details for the file numexpr-2.6.9-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.6.9-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 066d7202d3374d42203ce8ba2b007f14397fd083946abafebbc962215ead1759
MD5 0ab60e33d5f43022bd172917e8189f9b
BLAKE2b-256 6b4aa535e9d688c35b6038b930c4ba367b4c7a0bc3faed311f46529d2c16173b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page