Skip to main content

Fast numerical expression evaluator for NumPy

Project description

Author:

David M. Cooke, Francesc Alted and others

Contact:
faltet@gmail.com
URL:

https://github.com/pydata/numexpr

Documentation:

http://numexpr.readthedocs.io/en/latest/

Travis CI:

travis

Appveyor:

appveyor

PyPi:

version

DOI:

doi

readthedocs:

docs

What is NumExpr?

NumExpr is a fast numerical expression evaluator for NumPy. With it, expressions that operate on arrays (like '3*a+4*b') are accelerated and use less memory than doing the same calculation in Python.

In addition, its multi-threaded capabilities can make use of all your cores – which generally results in substantial performance scaling compared to NumPy.

Last but not least, numexpr can make use of Intel’s VML (Vector Math Library, normally integrated in its Math Kernel Library, or MKL). This allows further acceleration of transcendent expressions.

How NumExpr achieves high performance

The main reason why NumExpr achieves better performance than NumPy is that it avoids allocating memory for intermediate results. This results in better cache utilization and reduces memory access in general. Due to this, NumExpr works best with large arrays.

NumExpr parses expressions into its own op-codes that are then used by an integrated computing virtual machine. The array operands are split into small chunks that easily fit in the cache of the CPU and passed to the virtual machine. The virtual machine then applies the operations on each chunk. It’s worth noting that all temporaries and constants in the expression are also chunked. Chunks are distributed among the available cores of the CPU, resulting in highly parallelized code execution.

The result is that NumExpr can get the most of your machine computing capabilities for array-wise computations. Common speed-ups with regard to NumPy are usually between 0.95x (for very simple expressions like 'a + 1') and 4x (for relatively complex ones like 'a*b-4.1*a > 2.5*b'), although much higher speed-ups can be achieved for some functions and complex math operations (up to 15x in some cases).

NumExpr performs best on matrices that are too large to fit in L1 CPU cache. In order to get a better idea on the different speed-ups that can be achieved on your platform, run the provided benchmarks.

Usage

>>> import numpy as np
>>> import numexpr as ne

>>> a = np.arange(1e6)   # Choose large arrays for better speedups
>>> b = np.arange(1e6)

>>> ne.evaluate("a + 1")   # a simple expression
array([  1.00000000e+00,   2.00000000e+00,   3.00000000e+00, ...,
         9.99998000e+05,   9.99999000e+05,   1.00000000e+06])

>>> ne.evaluate('a*b-4.1*a > 2.5*b')   # a more complex one
array([False, False, False, ...,  True,  True,  True], dtype=bool)

>>> ne.evaluate("sin(a) + arcsinh(a/b)")   # you can also use functions
array([        NaN,  1.72284457,  1.79067101, ...,  1.09567006,
        0.17523598, -0.09597844])

>>> s = np.array(['abba', 'abbb', 'abbcdef'])
>>> ne.evaluate("'abba' == s")   # string arrays are supported too
array([ True, False, False], dtype=bool)

Documentation

Please see the official documentation at numexpr.readthedocs.io. Included is a user guide, benchmark results, and the reference API.

Authors

Please see AUTHORS.txt.

License

NumExpr is distributed under the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numexpr-2.7.0.tar.gz (95.7 kB view details)

Uploaded Source

Built Distributions

numexpr-2.7.0-cp38-none-win_amd64.whl (90.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

numexpr-2.7.0-cp38-none-win32.whl (91.2 kB view details)

Uploaded CPython 3.8 Windows x86

numexpr-2.7.0-cp38-cp38-manylinux1_x86_64.whl (164.5 kB view details)

Uploaded CPython 3.8

numexpr-2.7.0-cp38-cp38-manylinux1_i686.whl (150.8 kB view details)

Uploaded CPython 3.8

numexpr-2.7.0-cp38-cp38-macosx_10_9_x86_64.whl (101.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

numexpr-2.7.0-cp37-none-win_amd64.whl (90.6 kB view details)

Uploaded CPython 3.7 Windows x86-64

numexpr-2.7.0-cp37-none-win32.whl (90.9 kB view details)

Uploaded CPython 3.7 Windows x86

numexpr-2.7.0-cp37-cp37m-manylinux1_x86_64.whl (162.4 kB view details)

Uploaded CPython 3.7m

numexpr-2.7.0-cp37-cp37m-manylinux1_i686.whl (148.7 kB view details)

Uploaded CPython 3.7m

numexpr-2.7.0-cp37-cp37m-macosx_10_6_intel.whl (186.0 kB view details)

Uploaded CPython 3.7m macOS 10.6+ intel

numexpr-2.7.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (186.0 kB view details)

Uploaded CPython 3.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numexpr-2.7.0-cp36-none-win_amd64.whl (90.9 kB view details)

Uploaded CPython 3.6 Windows x86-64

numexpr-2.7.0-cp36-none-win32.whl (91.2 kB view details)

Uploaded CPython 3.6 Windows x86

numexpr-2.7.0-cp36-cp36m-manylinux1_x86_64.whl (162.3 kB view details)

Uploaded CPython 3.6m

numexpr-2.7.0-cp36-cp36m-manylinux1_i686.whl (148.6 kB view details)

Uploaded CPython 3.6m

numexpr-2.7.0-cp36-cp36m-macosx_10_6_intel.whl (185.9 kB view details)

Uploaded CPython 3.6m macOS 10.6+ intel

numexpr-2.7.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (186.0 kB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numexpr-2.7.0-cp35-none-win_amd64.whl (90.9 kB view details)

Uploaded CPython 3.5 Windows x86-64

numexpr-2.7.0-cp35-none-win32.whl (91.2 kB view details)

Uploaded CPython 3.5 Windows x86

numexpr-2.7.0-cp35-cp35m-manylinux1_x86_64.whl (162.3 kB view details)

Uploaded CPython 3.5m

numexpr-2.7.0-cp35-cp35m-manylinux1_i686.whl (148.6 kB view details)

Uploaded CPython 3.5m

numexpr-2.7.0-cp35-cp35m-macosx_10_6_intel.whl (185.9 kB view details)

Uploaded CPython 3.5m macOS 10.6+ intel

numexpr-2.7.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (186.0 kB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numexpr-2.7.0-cp34-none-win_amd64.whl (86.7 kB view details)

Uploaded CPython 3.4 Windows x86-64

numexpr-2.7.0-cp34-none-win32.whl (89.6 kB view details)

Uploaded CPython 3.4 Windows x86

numexpr-2.7.0-cp34-cp34m-manylinux1_x86_64.whl (162.2 kB view details)

Uploaded CPython 3.4m

numexpr-2.7.0-cp34-cp34m-manylinux1_i686.whl (148.5 kB view details)

Uploaded CPython 3.4m

numexpr-2.7.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (185.9 kB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numexpr-2.7.0-cp27-none-win_amd64.whl (106.6 kB view details)

Uploaded CPython 2.7 Windows x86-64

numexpr-2.7.0-cp27-none-win32.whl (113.9 kB view details)

Uploaded CPython 2.7 Windows x86

numexpr-2.7.0-cp27-cp27mu-manylinux1_x86_64.whl (162.1 kB view details)

Uploaded CPython 2.7mu

numexpr-2.7.0-cp27-cp27mu-manylinux1_i686.whl (148.5 kB view details)

Uploaded CPython 2.7mu

numexpr-2.7.0-cp27-cp27m-manylinux1_x86_64.whl (162.1 kB view details)

Uploaded CPython 2.7m

numexpr-2.7.0-cp27-cp27m-manylinux1_i686.whl (148.5 kB view details)

Uploaded CPython 2.7m

numexpr-2.7.0-cp27-cp27m-macosx_10_6_intel.whl (185.7 kB view details)

Uploaded CPython 2.7m macOS 10.6+ intel

numexpr-2.7.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (185.6 kB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file numexpr-2.7.0.tar.gz.

File metadata

  • Download URL: numexpr-2.7.0.tar.gz
  • Upload date:
  • Size: 95.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/3.6

File hashes

Hashes for numexpr-2.7.0.tar.gz
Algorithm Hash digest
SHA256 37324b5981b8962102bdc8640c4f05f5589da5d1df2702418783085cb78ca217
MD5 8f56da94ef2348be23ed9836f32bcf9b
BLAKE2b-256 87919e6305ec0f0560bf2c3730ad0b5ff3c8d6b48b442a830ff506bc6c829ac0

See more details on using hashes here.

Provenance

File details

Details for the file numexpr-2.7.0-cp38-none-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.7.0-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 90.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.40.0 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 7a776daffd1780b034f3bc52f9d21ec9346574d0ad038553421b9f43ad4d4ac9
MD5 712c0aefe9e4212c55e54b69798ac7b2
BLAKE2b-256 4c10cf85b21f255bf1b77b2c965912f069bd4b35ce03fca2ed9f5bb9773a4b8a

See more details on using hashes here.

Provenance

File details

Details for the file numexpr-2.7.0-cp38-none-win32.whl.

File metadata

  • Download URL: numexpr-2.7.0-cp38-none-win32.whl
  • Upload date:
  • Size: 91.2 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.40.0 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.0-cp38-none-win32.whl
Algorithm Hash digest
SHA256 5179cc43e9ec1194ce00918eff989d38b3f8ff50f041ec6d1cd868004f524a06
MD5 d5ecf8a34c58a501e99293407e864691
BLAKE2b-256 9799d075a31c2db50290831a250bd85210205d9b462a4270b79d4ef80a29a0d8

See more details on using hashes here.

Provenance

File details

Details for the file numexpr-2.7.0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.7.0-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 164.5 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.40.0 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 158f92c466d6d6d80354672c3825076f5726df19cbff3c12d7fc700902f0539e
MD5 9f036aeb68111b23bd707379f8539767
BLAKE2b-256 c8eb5d95087ad30e966eca4a32a06377d1ccf5e2b62743e20b04bed48c055e6b

See more details on using hashes here.

Provenance

File details

Details for the file numexpr-2.7.0-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: numexpr-2.7.0-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 150.8 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.40.0 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.0-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 d2a2544416d64690e6679cc359bb0fe34ef4143600394bfc4c8e4c9248ccf087
MD5 bc0999ec094b434d7ef232dd1b5be506
BLAKE2b-256 ccc264e22460850e9aa61380f1187763dc4a330f653780bcf192a977af4d5bf2

See more details on using hashes here.

Provenance

File details

Details for the file numexpr-2.7.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numexpr-2.7.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 101.4 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.40.0 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f5bdb526341292bc312136fa4662b0cd5cd07b6f3055ac0a5c60350228d0a0f1
MD5 39b51070d958f36de875a76fbb5c1e0a
BLAKE2b-256 774232e15cfa0c01b24e40cc25346e2921ea73189a20e405b167cf7046ef6c03

See more details on using hashes here.

Provenance

File details

Details for the file numexpr-2.7.0-cp37-none-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.7.0-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 90.6 kB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 16bf19e001000860acf81ada3b9392b39d9986abf30c507537fa417c9ee7b7b8
MD5 12c3ef8c93df8fc6d9c470652baffc35
BLAKE2b-256 03a6f36ea88aee29550dafda4f9db1d547518f24c1a4a364a56e4744ca805c2a

See more details on using hashes here.

Provenance

File details

Details for the file numexpr-2.7.0-cp37-none-win32.whl.

File metadata

  • Download URL: numexpr-2.7.0-cp37-none-win32.whl
  • Upload date:
  • Size: 90.9 kB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.0-cp37-none-win32.whl
Algorithm Hash digest
SHA256 70344db42a1e0f185b636729f6e4ad16510abc8d23a42557e9480254ba9b1d1a
MD5 e239b2c7b516a7df26e2f14b90ecd902
BLAKE2b-256 950074e006e760707b98db0fb07ec1827af8865227b51bd197392d13b03f5a63

See more details on using hashes here.

Provenance

File details

Details for the file numexpr-2.7.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.7.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 162.4 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4ed81428c9dd1cfb4e491ea61a2789d6e1c65262ca904a42577fc0bbee91520d
MD5 fafa351c52f4723be8c034688b704084
BLAKE2b-256 2c69274c2b81b9bdf7783150461c8982f23248dc917402ed4c6f8aa4b90bb98e

See more details on using hashes here.

Provenance

File details

Details for the file numexpr-2.7.0-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: numexpr-2.7.0-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 148.7 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.0-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 ec1329069312deed2161525be2492d13aee48df94cf406fd1d613e6250d9579e
MD5 16740cbe74610bb227472c253252d53e
BLAKE2b-256 b8277240ac452dbfc5ac515b83b654e9c4891bc633b37f13052169158f3fafc1

See more details on using hashes here.

Provenance

File details

Details for the file numexpr-2.7.0-cp37-cp37m-macosx_10_6_intel.whl.

File metadata

  • Download URL: numexpr-2.7.0-cp37-cp37m-macosx_10_6_intel.whl
  • Upload date:
  • Size: 186.0 kB
  • Tags: CPython 3.7m, macOS 10.6+ intel
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.40.0 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.0-cp37-cp37m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 9372fc2ccd7bf03ed1113860cc4a9e06bb4622ef1d52a523187316f8440ad47e
MD5 6598b68d9628a09d332dc6d315988962
BLAKE2b-256 d944052d71eb453733d4cb951abdf89ff64265720896e54236b02cfa92c29c54

See more details on using hashes here.

Provenance

File details

Details for the file numexpr-2.7.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.7.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 b2ed14711790b8506d914c3e1e31a855d89316bc332ac3208632772edf73580d
MD5 602af08690911494cdb227dd5a1f2a35
BLAKE2b-256 95e57eb027d5a2d74a0bb8cf6e3a13855649af3dce08973407d14a68b270de02

See more details on using hashes here.

Provenance

File details

Details for the file numexpr-2.7.0-cp36-none-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.7.0-cp36-none-win_amd64.whl
  • Upload date:
  • Size: 90.9 kB
  • Tags: CPython 3.6, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.0-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 16a92b61e6fc3fc351c36def2bce34d5fc1a519deb9320d1112fec443c0e0b04
MD5 1615c18b4aa568fea301c629d8aa77f4
BLAKE2b-256 2ab591e3287506246e089c8682356a5098be055767cd8b0e1a10c9452f100c7d

See more details on using hashes here.

Provenance

File details

Details for the file numexpr-2.7.0-cp36-none-win32.whl.

File metadata

  • Download URL: numexpr-2.7.0-cp36-none-win32.whl
  • Upload date:
  • Size: 91.2 kB
  • Tags: CPython 3.6, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.0-cp36-none-win32.whl
Algorithm Hash digest
SHA256 9d2b645319a826f1901728761b3474f426d5b2ea208ff29bd4c44669b2802199
MD5 896568ee9169f1e10250816b96dbfbe1
BLAKE2b-256 d1355b27a0cee57c96be413bfe50f01cd203ee3c2bc4532df3aec33ab2f75cbd

See more details on using hashes here.

Provenance

File details

Details for the file numexpr-2.7.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.7.0-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 162.3 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 78b38ae1cc7a521e1565d85e4c659a586040267615a9333b8b6922b206c67831
MD5 6e25795f7965600fcce4831585d109d0
BLAKE2b-256 065eee657b36ce1b6baabaafe485e97a31e7200f918c4b8643ebc4fd4fd07ada

See more details on using hashes here.

Provenance

File details

Details for the file numexpr-2.7.0-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: numexpr-2.7.0-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 148.6 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.0-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 8026b7e9b506f2257ddd9b8f2532a9a90682be6c63f20807c493290160e28b4e
MD5 7ce3cad92104827963d53903155a3bd1
BLAKE2b-256 748b45825eaf557893d9886508e456ebd8701fbee21e2ed7411e9336c4b9e231

See more details on using hashes here.

Provenance

File details

Details for the file numexpr-2.7.0-cp36-cp36m-macosx_10_6_intel.whl.

File metadata

  • Download URL: numexpr-2.7.0-cp36-cp36m-macosx_10_6_intel.whl
  • Upload date:
  • Size: 185.9 kB
  • Tags: CPython 3.6m, macOS 10.6+ intel
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.40.0 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.0-cp36-cp36m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 893fc0414e28dc83e73df5870feb5c8e03ea212c8c67aca1b8460d17902f9b2d
MD5 91027045fe88be41501d7db9ae00002e
BLAKE2b-256 a8e37da0757cd6f4fa7c51fe580319014092e60162f9b28dbf2aae50dd74ee43

See more details on using hashes here.

Provenance

File details

Details for the file numexpr-2.7.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.7.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 8798b65e5d96fce2c595bdec43377b6154fe67e89ba04718402d66f03124f8cc
MD5 f0c615b0aef44cca50e964ffabbabade
BLAKE2b-256 290a6cdb50881e066bb1c6f6f8c2f3bee17b974001fad5e3413cf16b14c02718

See more details on using hashes here.

Provenance

File details

Details for the file numexpr-2.7.0-cp35-none-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.7.0-cp35-none-win_amd64.whl
  • Upload date:
  • Size: 90.9 kB
  • Tags: CPython 3.5, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.0-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 5e1b771425e172b3d021c7304605e49a578bb7553ee00adda2f3ca12a7f0831c
MD5 032aeb4dc2d942bb2b100f81c4b4d5a4
BLAKE2b-256 3cb4a1d544abf276f39045ace82cf4f88e0240d317abb35a8b10c9b0c498cbfa

See more details on using hashes here.

Provenance

File details

Details for the file numexpr-2.7.0-cp35-none-win32.whl.

File metadata

  • Download URL: numexpr-2.7.0-cp35-none-win32.whl
  • Upload date:
  • Size: 91.2 kB
  • Tags: CPython 3.5, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.0-cp35-none-win32.whl
Algorithm Hash digest
SHA256 0fbae343da0b8246feb2347696669ab2110d6ef36806f2a94eecf98ce9b717d0
MD5 58684fa54bc57c18bb2747e957ffff37
BLAKE2b-256 4b51f48b6f62371a3dfc27ad2e8db266ae931bdb1261561efaf8f1156524c6e8

See more details on using hashes here.

Provenance

File details

Details for the file numexpr-2.7.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.7.0-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 162.3 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 bacc2229201af53ea9c27e439b3507394c0bc6ab18cc776868be2c5150442644
MD5 c632f9628290942b6e3c27c30cbec25f
BLAKE2b-256 02d434a7eba07eac52b4064b2043d382face523b81f995cebdac0d12540bd5f4

See more details on using hashes here.

Provenance

File details

Details for the file numexpr-2.7.0-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: numexpr-2.7.0-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 148.6 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.0-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 cae704f0bcb6bbb22a0bdfd0e44c92b02f79e3396a7846f2f94b39cde1c1865c
MD5 63f46801b228318951c3beca613af246
BLAKE2b-256 11b0462000ce2c2045afc2dfce7a1c14bd77a64d4e53d445f0fa46ec39ecf67c

See more details on using hashes here.

Provenance

File details

Details for the file numexpr-2.7.0-cp35-cp35m-macosx_10_6_intel.whl.

File metadata

  • Download URL: numexpr-2.7.0-cp35-cp35m-macosx_10_6_intel.whl
  • Upload date:
  • Size: 185.9 kB
  • Tags: CPython 3.5m, macOS 10.6+ intel
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.40.0 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.0-cp35-cp35m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 71ea260b9b57679b5d4fdefc985d709a651961b207b92eee605fb6972d22d97f
MD5 e4d65322c2fa8cd5b07194e8c72129c3
BLAKE2b-256 3973283dbaef121ccfa83f0d1fe63eaffcf367ef953d4070eaf9545d20869465

See more details on using hashes here.

Provenance

File details

Details for the file numexpr-2.7.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.7.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 f9c5ca97e4cd84fe55579c3d764ddff08cefbb9318888d3be6d0455c5c2297bc
MD5 e0fc3bd193e12a27be373a2c48eba36b
BLAKE2b-256 b67ffafbdc580d0ef8b664788c558a1531437a6c0f82b03023dee91ca0622feb

See more details on using hashes here.

Provenance

File details

Details for the file numexpr-2.7.0-cp34-none-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.7.0-cp34-none-win_amd64.whl
  • Upload date:
  • Size: 86.7 kB
  • Tags: CPython 3.4, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.0-cp34-none-win_amd64.whl
Algorithm Hash digest
SHA256 81e4bf39c466392b30d11ef80f88a656a6021ce6db3ca0c18d07c1bf75b0ab09
MD5 04aa3a23a3bb149a5698d749f0167a44
BLAKE2b-256 f9b4f65dc3258d494460192d0993894a171a3ba5e732bad1a3956709b7344b7a

See more details on using hashes here.

Provenance

File details

Details for the file numexpr-2.7.0-cp34-none-win32.whl.

File metadata

  • Download URL: numexpr-2.7.0-cp34-none-win32.whl
  • Upload date:
  • Size: 89.6 kB
  • Tags: CPython 3.4, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.0-cp34-none-win32.whl
Algorithm Hash digest
SHA256 39e9a2feb85778f2085dd771f92853949120b135bca4ae195e4767bcf54ad379
MD5 6b6a2553920ade9bc3d709f6d870feae
BLAKE2b-256 ed64cc55c6c5b333d6ab356f691d8ddb7dae36dbd4ad222aea219d65c0c96ca3

See more details on using hashes here.

Provenance

File details

Details for the file numexpr-2.7.0-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.7.0-cp34-cp34m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 162.2 kB
  • Tags: CPython 3.4m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.0-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 bae34759be74476cc7b8746b86eb19e7a5a8e3964df73f4096b539fcadd51f52
MD5 1212249d9a275af19a5a9f6eacebfa58
BLAKE2b-256 1e5e1f9361dab769fe20bcede892ea7d5e1e034003e4ad6a8c7364e42020ce28

See more details on using hashes here.

Provenance

File details

Details for the file numexpr-2.7.0-cp34-cp34m-manylinux1_i686.whl.

File metadata

  • Download URL: numexpr-2.7.0-cp34-cp34m-manylinux1_i686.whl
  • Upload date:
  • Size: 148.5 kB
  • Tags: CPython 3.4m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.0-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 d1f91b98c4e525467b5c26759135bf30413c671a58dd729babc89d4b37619a72
MD5 4906e9583ef99ca572f9ca8a4afd3479
BLAKE2b-256 141b1a8befed45b2740e7007dfabdaa2229aad91da57fa91828e4610c39fddae

See more details on using hashes here.

Provenance

File details

Details for the file numexpr-2.7.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.7.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 201056cdf4b769148097f90929b7b31f8e638212cfebc8524e6ad3220cdcaf1a
MD5 96bc23098c0451c7890d156c89af2c57
BLAKE2b-256 d0d8c01113741d04bf6b41f978b3882b283558d497811c2abe90e6cf0e1886ab

See more details on using hashes here.

Provenance

File details

Details for the file numexpr-2.7.0-cp27-none-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.7.0-cp27-none-win_amd64.whl
  • Upload date:
  • Size: 106.6 kB
  • Tags: CPython 2.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.0-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 85a743544be9eff5734060451da9da7eb5b49ec75e596020aad385b6af98f064
MD5 89310353e4b2c594228e3a5d70c2927f
BLAKE2b-256 45d35997f8c7d48d4947665c7e7dfaabc3076da85390faf015288e39f242d520

See more details on using hashes here.

Provenance

File details

Details for the file numexpr-2.7.0-cp27-none-win32.whl.

File metadata

  • Download URL: numexpr-2.7.0-cp27-none-win32.whl
  • Upload date:
  • Size: 113.9 kB
  • Tags: CPython 2.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.0-cp27-none-win32.whl
Algorithm Hash digest
SHA256 0a7c9bdac56ced9d8d8e8f7b2114d5c7bb0b78373f81e6be3a1d147455b5fb5c
MD5 c398dde53777a044a4ee599937ca9fdd
BLAKE2b-256 0a539d4a3eede22af8104abf409a411cab94396807fc4e0ec8c39a0b93177841

See more details on using hashes here.

Provenance

File details

Details for the file numexpr-2.7.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.7.0-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 162.1 kB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 aff55bcfa9590f039c0ed454b3b757a65f43fb9a8af6d2bcac3dca6a6b8491b1
MD5 37c108348ca24c0ea71f54e8ee4df701
BLAKE2b-256 9ee9b72415d496b711baaf040098342b15ecbcceb0808325fc672f9c0177887b

See more details on using hashes here.

Provenance

File details

Details for the file numexpr-2.7.0-cp27-cp27mu-manylinux1_i686.whl.

File metadata

  • Download URL: numexpr-2.7.0-cp27-cp27mu-manylinux1_i686.whl
  • Upload date:
  • Size: 148.5 kB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.0-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 aac593ee3b7fde6cd7aca956cd084a4ad5783326e563f05340427d934c7aca6f
MD5 20a1b6655f28e181048bb041d74fe5e7
BLAKE2b-256 7ae0cca0ab6f0299c5c04ed19a3ea742bf4228d82c9e92b956822c02569e311f

See more details on using hashes here.

Provenance

File details

Details for the file numexpr-2.7.0-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.7.0-cp27-cp27m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 162.1 kB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.0-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b6805fc38c743c81bdc8d9de7887f055f96205a79db97f613c061b375e64d299
MD5 39ee88471b55369e13c37f461e871281
BLAKE2b-256 0a65cd9e440a1b143e7f86e01dd37445b0ac4035389353fcee65b390dfef8dd4

See more details on using hashes here.

Provenance

File details

Details for the file numexpr-2.7.0-cp27-cp27m-manylinux1_i686.whl.

File metadata

  • Download URL: numexpr-2.7.0-cp27-cp27m-manylinux1_i686.whl
  • Upload date:
  • Size: 148.5 kB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.0-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 08bdae334855b19c55137b5a3c0d1bb1b05f23f7e6df24e47dfc8d5b3de4e10a
MD5 7eba2fd6d27e1fbe1a72b91b3065051a
BLAKE2b-256 05eb08913e2d8be435c799f038e42864b4eeb5e3944455d03296eba371503a78

See more details on using hashes here.

Provenance

File details

Details for the file numexpr-2.7.0-cp27-cp27m-macosx_10_6_intel.whl.

File metadata

  • Download URL: numexpr-2.7.0-cp27-cp27m-macosx_10_6_intel.whl
  • Upload date:
  • Size: 185.7 kB
  • Tags: CPython 2.7m, macOS 10.6+ intel
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.40.0 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.0-cp27-cp27m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 809746109eb55e79e356f71c0a38784e7dc30bc6b51fdeaad4f3bce10a62dc39
MD5 cc3969c00edecd4398922c40db18abf9
BLAKE2b-256 86d9fcb8ca993b60f72ee3404689394dcfb3fbb2ccdac7b736de733965814785

See more details on using hashes here.

Provenance

File details

Details for the file numexpr-2.7.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.7.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 49f97366ed8e0e970ae7f96d569d4aee6372dfe61951cd08b142edada2c459d7
MD5 f3c008306bd17a9fe096fe489328b928
BLAKE2b-256 1280ac69cdb259571549ef8f1bf187bb3ecc60e941c4b88df10efd8145c17451

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page