Skip to main content

Fast numerical expression evaluator for NumPy

Project description

Author:

David M. Cooke, Francesc Alted and others

Contact:
faltet@gmail.com
URL:

https://github.com/pydata/numexpr

Documentation:

http://numexpr.readthedocs.io/en/latest/

Travis CI:

travis

Appveyor:

appveyor

PyPi:

version

DOI:

doi

readthedocs:

docs

What is NumExpr?

NumExpr is a fast numerical expression evaluator for NumPy. With it, expressions that operate on arrays (like '3*a+4*b') are accelerated and use less memory than doing the same calculation in Python.

In addition, its multi-threaded capabilities can make use of all your cores – which generally results in substantial performance scaling compared to NumPy.

Last but not least, numexpr can make use of Intel’s VML (Vector Math Library, normally integrated in its Math Kernel Library, or MKL). This allows further acceleration of transcendent expressions.

How NumExpr achieves high performance

The main reason why NumExpr achieves better performance than NumPy is that it avoids allocating memory for intermediate results. This results in better cache utilization and reduces memory access in general. Due to this, NumExpr works best with large arrays.

NumExpr parses expressions into its own op-codes that are then used by an integrated computing virtual machine. The array operands are split into small chunks that easily fit in the cache of the CPU and passed to the virtual machine. The virtual machine then applies the operations on each chunk. It’s worth noting that all temporaries and constants in the expression are also chunked. Chunks are distributed among the available cores of the CPU, resulting in highly parallelized code execution.

The result is that NumExpr can get the most of your machine computing capabilities for array-wise computations. Common speed-ups with regard to NumPy are usually between 0.95x (for very simple expressions like 'a + 1') and 4x (for relatively complex ones like 'a*b-4.1*a > 2.5*b'), although much higher speed-ups can be achieved for some functions and complex math operations (up to 15x in some cases).

NumExpr performs best on matrices that are too large to fit in L1 CPU cache. In order to get a better idea on the different speed-ups that can be achieved on your platform, run the provided benchmarks.

Usage

>>> import numpy as np
>>> import numexpr as ne

>>> a = np.arange(1e6)   # Choose large arrays for better speedups
>>> b = np.arange(1e6)

>>> ne.evaluate("a + 1")   # a simple expression
array([  1.00000000e+00,   2.00000000e+00,   3.00000000e+00, ...,
         9.99998000e+05,   9.99999000e+05,   1.00000000e+06])

>>> ne.evaluate('a*b-4.1*a > 2.5*b')   # a more complex one
array([False, False, False, ...,  True,  True,  True], dtype=bool)

>>> ne.evaluate("sin(a) + arcsinh(a/b)")   # you can also use functions
array([        NaN,  1.72284457,  1.79067101, ...,  1.09567006,
        0.17523598, -0.09597844])

>>> s = np.array(['abba', 'abbb', 'abbcdef'])
>>> ne.evaluate("'abba' == s")   # string arrays are supported too
array([ True, False, False], dtype=bool)

Documentation

Please see the official documentation at numexpr.readthedocs.io. Included is a user guide, benchmark results, and the reference API.

Authors

Please see AUTHORS.txt.

License

NumExpr is distributed under the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numexpr-2.7.1.tar.gz (99.2 kB view details)

Uploaded Source

Built Distributions

numexpr-2.7.1-cp38-none-win_amd64.whl (90.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

numexpr-2.7.1-cp38-none-win32.whl (91.2 kB view details)

Uploaded CPython 3.8 Windows x86

numexpr-2.7.1-cp38-cp38-manylinux1_x86_64.whl (164.5 kB view details)

Uploaded CPython 3.8

numexpr-2.7.1-cp38-cp38-manylinux1_i686.whl (150.8 kB view details)

Uploaded CPython 3.8

numexpr-2.7.1-cp38-cp38-macosx_10_9_x86_64.whl (101.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

numexpr-2.7.1-cp37-none-win_amd64.whl (90.6 kB view details)

Uploaded CPython 3.7 Windows x86-64

numexpr-2.7.1-cp37-none-win32.whl (90.9 kB view details)

Uploaded CPython 3.7 Windows x86

numexpr-2.7.1-cp37-cp37m-manylinux1_x86_64.whl (162.4 kB view details)

Uploaded CPython 3.7m

numexpr-2.7.1-cp37-cp37m-macosx_10_6_intel.whl (186.1 kB view details)

Uploaded CPython 3.7m macOS 10.6+ intel

numexpr-2.7.1-cp36-none-win_amd64.whl (90.9 kB view details)

Uploaded CPython 3.6 Windows x86-64

numexpr-2.7.1-cp36-none-win32.whl (91.2 kB view details)

Uploaded CPython 3.6 Windows x86

numexpr-2.7.1-cp36-cp36m-manylinux1_x86_64.whl (162.3 kB view details)

Uploaded CPython 3.6m

numexpr-2.7.1-cp36-cp36m-manylinux1_i686.whl (148.6 kB view details)

Uploaded CPython 3.6m

numexpr-2.7.1-cp36-cp36m-macosx_10_6_intel.whl (185.9 kB view details)

Uploaded CPython 3.6m macOS 10.6+ intel

numexpr-2.7.1-cp35-none-win_amd64.whl (90.9 kB view details)

Uploaded CPython 3.5 Windows x86-64

numexpr-2.7.1-cp35-none-win32.whl (91.2 kB view details)

Uploaded CPython 3.5 Windows x86

numexpr-2.7.1-cp35-cp35m-manylinux1_x86_64.whl (162.3 kB view details)

Uploaded CPython 3.5m

numexpr-2.7.1-cp35-cp35m-manylinux1_i686.whl (148.6 kB view details)

Uploaded CPython 3.5m

numexpr-2.7.1-cp35-cp35m-macosx_10_6_intel.whl (185.9 kB view details)

Uploaded CPython 3.5m macOS 10.6+ intel

numexpr-2.7.1-cp27-none-win_amd64.whl (106.6 kB view details)

Uploaded CPython 2.7 Windows x86-64

numexpr-2.7.1-cp27-none-win32.whl (113.9 kB view details)

Uploaded CPython 2.7 Windows x86

numexpr-2.7.1-cp27-cp27mu-manylinux1_x86_64.whl (161.8 kB view details)

Uploaded CPython 2.7mu

numexpr-2.7.1-cp27-cp27mu-manylinux1_i686.whl (149.8 kB view details)

Uploaded CPython 2.7mu

numexpr-2.7.1-cp27-cp27m-manylinux1_x86_64.whl (161.8 kB view details)

Uploaded CPython 2.7m

numexpr-2.7.1-cp27-cp27m-manylinux1_i686.whl (149.8 kB view details)

Uploaded CPython 2.7m

numexpr-2.7.1-cp27-cp27m-macosx_10_6_intel.whl (185.7 kB view details)

Uploaded CPython 2.7m macOS 10.6+ intel

File details

Details for the file numexpr-2.7.1.tar.gz.

File metadata

  • Download URL: numexpr-2.7.1.tar.gz
  • Upload date:
  • Size: 99.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/3.8

File hashes

Hashes for numexpr-2.7.1.tar.gz
Algorithm Hash digest
SHA256 b0d239d9827e1bcee08344fd05835823bc60aff97232e35a928214d03ff802b1
MD5 b96931414667e7772be93f9ea6280b36
BLAKE2b-256 467eb3ced78dcf3081bebad86f30589fece165c947576e7f8c9a136ef37bf1c5

See more details on using hashes here.

File details

Details for the file numexpr-2.7.1-cp38-none-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.7.1-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 90.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.40.0 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.1-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 659cee220ebe4bf88cb527ca9723d7cb390e93cbae8729ff5e927d06713bad26
MD5 de81e07f4bd32ad82f0b98fc986d91ea
BLAKE2b-256 47252e7a927c5b49316b65752cde57800017795bb97fc7f9dee6cf4529e8d142

See more details on using hashes here.

File details

Details for the file numexpr-2.7.1-cp38-none-win32.whl.

File metadata

  • Download URL: numexpr-2.7.1-cp38-none-win32.whl
  • Upload date:
  • Size: 91.2 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.40.0 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.1-cp38-none-win32.whl
Algorithm Hash digest
SHA256 7cd5369c2f8cb4bac57571e52bca1a9ccc0260567cefa39ac40680dad0e9df4c
MD5 671b03770751f2f10d3a9d4147cc62e1
BLAKE2b-256 c97f724258d1ea78a25e1ee755e1f96d749fa4405c847f8a2264804c16644a8e

See more details on using hashes here.

File details

Details for the file numexpr-2.7.1-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.7.1-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 164.5 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.40.0 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.1-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a478e224a23609e1bef45b44a65aad2f158a3072947fc0085c231953b1fafdcd
MD5 f7abedeace9ef4fa1c6c1eda4a9a2548
BLAKE2b-256 d64780c703a328ba4b5ca45f4a7b88f4507f2cc1b1244f34920380801c1a1e82

See more details on using hashes here.

File details

Details for the file numexpr-2.7.1-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: numexpr-2.7.1-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 150.8 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.40.0 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.1-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 eb2bd8656ee2a92b2e928904d6b7ad434f559b1f74a381ff5f36ad987badd1a6
MD5 5817db1999382e0dd4c22cb0c608419c
BLAKE2b-256 64fd69472faf71e64e0059702f2d7611fdf2e0bb605860ffb86abb45977388ea

See more details on using hashes here.

File details

Details for the file numexpr-2.7.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numexpr-2.7.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 101.4 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.40.0 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9f91ea6385f743d5ef5ef0a074270a057115d8a4c57625800dd25b5912f563b2
MD5 0752845200969d492662a10ffdfd00f1
BLAKE2b-256 2a2834acb4081354760e3305991155509cb2410d5ec93096a6523fc4530670b1

See more details on using hashes here.

File details

Details for the file numexpr-2.7.1-cp37-none-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.7.1-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 90.6 kB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.40.0 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.1-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 84d10e27833a5be6c9a61350cba2acb2f36af1e71c4d47c390b4cc80704ccb55
MD5 acc735e39d3e9e920313048f4a8dd28f
BLAKE2b-256 d7fd6697b378c24fb0475754169186e9a4c69d807c5234e15dde0a8bd788f031

See more details on using hashes here.

File details

Details for the file numexpr-2.7.1-cp37-none-win32.whl.

File metadata

  • Download URL: numexpr-2.7.1-cp37-none-win32.whl
  • Upload date:
  • Size: 90.9 kB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.40.0 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.1-cp37-none-win32.whl
Algorithm Hash digest
SHA256 4655276892b5274015377a4487e1c57cc257c666e5578e12679029cc1124fb08
MD5 f94aa09ecbd08c1919e4f4a6024e54d0
BLAKE2b-256 89b9660f0076f3bd0be16cd73de78704a92f8c98ad7cdbb19426736c3f45f819

See more details on using hashes here.

File details

Details for the file numexpr-2.7.1-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.7.1-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 162.4 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.40.0 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 33a610bb775a84ab8ded0af4041df2e931ce7edf5b465ccd9851511429c86d0f
MD5 680fa7ecd4dab80d08c725b26bfe36c7
BLAKE2b-256 c5de3811c7ce8612b4a27bfbf81a779c5970a31a038e32dc6a979e7f2867f56d

See more details on using hashes here.

File details

Details for the file numexpr-2.7.1-cp37-cp37m-macosx_10_6_intel.whl.

File metadata

  • Download URL: numexpr-2.7.1-cp37-cp37m-macosx_10_6_intel.whl
  • Upload date:
  • Size: 186.1 kB
  • Tags: CPython 3.7m, macOS 10.6+ intel
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.40.0 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.1-cp37-cp37m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 78c7040baf20036f0d85308fd5f8322e30d553b8daff1de264394014feb62cc0
MD5 df6b6b87275bf34afb063a3ca3ac0134
BLAKE2b-256 59888ba895548e8b8353b585a66b34d85ce5b80ea97bfb02ce2d3b1528558c43

See more details on using hashes here.

File details

Details for the file numexpr-2.7.1-cp36-none-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.7.1-cp36-none-win_amd64.whl
  • Upload date:
  • Size: 90.9 kB
  • Tags: CPython 3.6, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.40.0 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.1-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 57d9ccd0820b7f5b1bed5100dd54a5ae52c39eb5b7e54317ae29e31ed9bd9edf
MD5 504ee05b5364badb66127be714142188
BLAKE2b-256 6c6b44a9ddee4cdb260be71a2900b8a961897c13620bad6f4770b47dd7b32bf1

See more details on using hashes here.

File details

Details for the file numexpr-2.7.1-cp36-none-win32.whl.

File metadata

  • Download URL: numexpr-2.7.1-cp36-none-win32.whl
  • Upload date:
  • Size: 91.2 kB
  • Tags: CPython 3.6, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.40.0 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.1-cp36-none-win32.whl
Algorithm Hash digest
SHA256 208597cacb191fe983b4ae05dc9ae8177b17d82a0d9f34719d71ac614744f53b
MD5 8bcac804268b5d8cec57fe6dc6daf822
BLAKE2b-256 a751949f3e2080d0f56f4340d1dc40e078df8852fae0a798c0e62d09ae72bdd7

See more details on using hashes here.

File details

Details for the file numexpr-2.7.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.7.1-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 162.3 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.40.0 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 280c316d56903d20a474c5e03c073371b8879842b8070606cef0c1ea7371933a
MD5 8f0daa4ab19cb597437bf8047def6d5a
BLAKE2b-256 36edeac5f6123f54a61cd13b7e89826b97edea54adf76d9f8e9fa2ce70e2fdf8

See more details on using hashes here.

File details

Details for the file numexpr-2.7.1-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: numexpr-2.7.1-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 148.6 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.40.0 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.1-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 687fa9521dbafb130f42d61462f968f211f7eb364f2789c5fbe65d82809ad6b2
MD5 f1f56bcce803b98c1cd48c2c1f3a108e
BLAKE2b-256 acdd1306ce74f7dc148d06244a5ae73d6047c0240d87adff19420eda549dd08c

See more details on using hashes here.

File details

Details for the file numexpr-2.7.1-cp36-cp36m-macosx_10_6_intel.whl.

File metadata

  • Download URL: numexpr-2.7.1-cp36-cp36m-macosx_10_6_intel.whl
  • Upload date:
  • Size: 185.9 kB
  • Tags: CPython 3.6m, macOS 10.6+ intel
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.40.0 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.1-cp36-cp36m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 2cb778a74f315aafc8eded19781e444269bd45f4ce3095697595e5000dc20f8a
MD5 e76558d9cb192b7669e6a66247c5feb7
BLAKE2b-256 9d9f5e41ac81cfbdf7c0dc9c0da71ba0966377082d02c6c15cc92ae8198aed95

See more details on using hashes here.

File details

Details for the file numexpr-2.7.1-cp35-none-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.7.1-cp35-none-win_amd64.whl
  • Upload date:
  • Size: 90.9 kB
  • Tags: CPython 3.5, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.40.0 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.1-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 59984617a50369670a88a0f0b6decdf59a93828dc42e29c8851bcffcedf0695b
MD5 004ed24716535ff7cfffdb1da0253aa8
BLAKE2b-256 ce72761b58fbdb1c1ba2fcc8bbc6c3f6f7da76389cad5b92f6a86d6178db79f5

See more details on using hashes here.

File details

Details for the file numexpr-2.7.1-cp35-none-win32.whl.

File metadata

  • Download URL: numexpr-2.7.1-cp35-none-win32.whl
  • Upload date:
  • Size: 91.2 kB
  • Tags: CPython 3.5, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.40.0 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.1-cp35-none-win32.whl
Algorithm Hash digest
SHA256 841c23811b00f35b4ce2c330b57c4398ff4a61af4488ce0e013e5039bba68188
MD5 13fc983bb38b31d4aba1bc745cb170d9
BLAKE2b-256 7ff3c2587f94d57b5620d914eaf864148a4b78a4a95416d7496cc2447ca64207

See more details on using hashes here.

File details

Details for the file numexpr-2.7.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.7.1-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 162.3 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.40.0 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0eb8d1a949dcc3eea633438af939f406aaaf240ae69b4ab85ed0c11b8d5e77ee
MD5 6ba5d4cdacee7faf2b415cdca5591839
BLAKE2b-256 07c0072307a640afabdf0bed117c14fe9e60a83c92d915a4ca20ddb6516c29b7

See more details on using hashes here.

File details

Details for the file numexpr-2.7.1-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: numexpr-2.7.1-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 148.6 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.40.0 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.1-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 583fcf614521edf6eb1326e982d6fe3951dbd451d63e51f7438f0142b491d43f
MD5 634d3f9e83155b400a6b809491bad48e
BLAKE2b-256 9ed74b30aa72e3b9c16037546438345c744b250724bab1bfc9aec0c853703aeb

See more details on using hashes here.

File details

Details for the file numexpr-2.7.1-cp35-cp35m-macosx_10_6_intel.whl.

File metadata

  • Download URL: numexpr-2.7.1-cp35-cp35m-macosx_10_6_intel.whl
  • Upload date:
  • Size: 185.9 kB
  • Tags: CPython 3.5m, macOS 10.6+ intel
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.40.0 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.1-cp35-cp35m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 9e7dbf2a849c34f5e61f9b8119688108f7b5dec97ee8ea2946440bc69a4b28d0
MD5 32b3cd1d465c8dede97b066409d47dd8
BLAKE2b-256 c3432a68a029eebe7e411501b1f7a344c2999d3f67aeddd36bf7479878b7be78

See more details on using hashes here.

File details

Details for the file numexpr-2.7.1-cp27-none-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.7.1-cp27-none-win_amd64.whl
  • Upload date:
  • Size: 106.6 kB
  • Tags: CPython 2.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.40.0 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.1-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 49f835568c864b444fa6fccf64cc01ff51a6171311742451ac4a176df471f9d8
MD5 945e7a715bc2a4ca7760b110cf89acae
BLAKE2b-256 ccf986472f7cab1c09090a5a191430bd60ab203b046f854c1ad57428238433d3

See more details on using hashes here.

File details

Details for the file numexpr-2.7.1-cp27-none-win32.whl.

File metadata

  • Download URL: numexpr-2.7.1-cp27-none-win32.whl
  • Upload date:
  • Size: 113.9 kB
  • Tags: CPython 2.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.40.0 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.1-cp27-none-win32.whl
Algorithm Hash digest
SHA256 e6a7d0c269a3d9e117072551e78ec5332ece7297f80acf6447d701de0328e7df
MD5 ab9d710cf8a7931edc42f9c7c44e1e07
BLAKE2b-256 0ce4fb9b24fda8fbf95957880d5cb5470d6b1d9173e3d5c04caa10eac9ea12b3

See more details on using hashes here.

File details

Details for the file numexpr-2.7.1-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.7.1-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 161.8 kB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.40.0 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 57b7fcf2d0a1370bc9a380f3a96f6d10e4dfab5081b61a198a8d23b80c33e634
MD5 a39801d6152359a1a031e00dcbd927b1
BLAKE2b-256 ee68cc58763146bc01abc7cee102e3d38cbad6c732cfe22492986fb25650728a

See more details on using hashes here.

File details

Details for the file numexpr-2.7.1-cp27-cp27mu-manylinux1_i686.whl.

File metadata

  • Download URL: numexpr-2.7.1-cp27-cp27mu-manylinux1_i686.whl
  • Upload date:
  • Size: 149.8 kB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.40.0 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.1-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 81ff83abc969288673ad37055fef3e5e80cdc87f90245b76c0af9bdef6d5c509
MD5 ce1e9dcf7e3cc0b34e3181475b1aab69
BLAKE2b-256 e65c28902a59ffd8cd81b4ddb79dcf244b534188a576c919f88ed558872ef6ee

See more details on using hashes here.

File details

Details for the file numexpr-2.7.1-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.7.1-cp27-cp27m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 161.8 kB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.40.0 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.1-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e518918a077478523d89060a8eb59178fd80f7f1273fe1a74088c46163fa49b5
MD5 dc9d2df528c5f6c4da9a229d11bc0710
BLAKE2b-256 b8e23d0c1283a0ef91dcc11872d8e0ee7520281386b41f59e5bc9087a6137370

See more details on using hashes here.

File details

Details for the file numexpr-2.7.1-cp27-cp27m-manylinux1_i686.whl.

File metadata

  • Download URL: numexpr-2.7.1-cp27-cp27m-manylinux1_i686.whl
  • Upload date:
  • Size: 149.8 kB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.40.0 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.1-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 3d83f6f3d6d449eb82a4a5bd56b9d61c9e1ade65b1188052700171051329888b
MD5 ac40088bd524b2cc1fbd98db44b23c29
BLAKE2b-256 c3f499e2de0b78256d3d7177ed0eb7c605c74418f642515ab79da6d5230d5f87

See more details on using hashes here.

File details

Details for the file numexpr-2.7.1-cp27-cp27m-macosx_10_6_intel.whl.

File metadata

  • Download URL: numexpr-2.7.1-cp27-cp27m-macosx_10_6_intel.whl
  • Upload date:
  • Size: 185.7 kB
  • Tags: CPython 2.7m, macOS 10.6+ intel
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.40.0 CPython/3.6.3

File hashes

Hashes for numexpr-2.7.1-cp27-cp27m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 c169e1424d495b7efefe69c046cbf89ae0dc7a071a89b6b844ae328ac48fccbc
MD5 c04fe5f92179f04a7c722b6abe811494
BLAKE2b-256 a849b27f05c86de31e8db391bf5dee750bfc16d8ffd50b97f72c19b8a2d6211a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page