Skip to main content

Fast numerical expression evaluator for NumPy

Project description

Author:

David M. Cooke, Francesc Alted, and others.

Maintainer:

Robert A. McLeod

Contact:
robbmcleod@gmail.com
URL:

https://github.com/pydata/numexpr

Documentation:

http://numexpr.readthedocs.io/en/latest/

Travis CI:

travis

GitHub Actions:

actions

PyPi:

version

DOI:

doi

readthedocs:

docs

What is NumExpr?

NumExpr is a fast numerical expression evaluator for NumPy. With it, expressions that operate on arrays (like '3*a+4*b') are accelerated and use less memory than doing the same calculation in Python.

In addition, its multi-threaded capabilities can make use of all your cores – which generally results in substantial performance scaling compared to NumPy.

Last but not least, numexpr can make use of Intel’s VML (Vector Math Library, normally integrated in its Math Kernel Library, or MKL). This allows further acceleration of transcendent expressions.

How NumExpr achieves high performance

The main reason why NumExpr achieves better performance than NumPy is that it avoids allocating memory for intermediate results. This results in better cache utilization and reduces memory access in general. Due to this, NumExpr works best with large arrays.

NumExpr parses expressions into its own op-codes that are then used by an integrated computing virtual machine. The array operands are split into small chunks that easily fit in the cache of the CPU and passed to the virtual machine. The virtual machine then applies the operations on each chunk. It’s worth noting that all temporaries and constants in the expression are also chunked. Chunks are distributed among the available cores of the CPU, resulting in highly parallelized code execution.

The result is that NumExpr can get the most of your machine computing capabilities for array-wise computations. Common speed-ups with regard to NumPy are usually between 0.95x (for very simple expressions like 'a + 1') and 4x (for relatively complex ones like 'a*b-4.1*a > 2.5*b'), although much higher speed-ups can be achieved for some functions and complex math operations (up to 15x in some cases).

NumExpr performs best on matrices that are too large to fit in L1 CPU cache. In order to get a better idea on the different speed-ups that can be achieved on your platform, run the provided benchmarks.

Installation

From wheels

NumExpr is available for install via pip for a wide range of platforms and Python versions (which may be browsed at: https://pypi-hypernode.com/project/numexpr/#files). Installation can be performed as:

pip install numexpr

If you are using the Anaconda or Miniconda distribution of Python you may prefer to use the conda package manager in this case:

conda install numexpr

From Source

On most Nix systems your compilers will already be present. However if you are using a virtual environment with a substantially newer version of Python than your system Python you may be prompted to install a new version of `gcc or clang.

For Windows, you will need to install the Microsoft Visual C++ Build Tools (which are free) first.The version depends on which version of Python you have installed:

https://wiki.python.org/moin/WindowsCompilers

For Python 3.6+ simply installating the latest version of MSVC build tools should be sufficient. Note that wheels found via pip do not include MKL support. Wheels available via conda will have MKL, if the MKL backend is used for NumPy.

See requirements.txt for the required version of NumPy.

NumExpr is built in the standard Python way:

python setup.py build install

You can test numexpr with:

python -c "import numexpr; numexpr.test()"

Do not test NumExpr in the source directory or you will generate import errors.

Enable Intel® MKL support

NumExpr includes support for Intel’s MKL library. This may provide better performance on Intel architectures, mainly when evaluating transcendental functions (trigonometrical, exponential…).

If you have Intel’s MKL, copy the site.cfg.example that comes with the distribution to site.cfg and edit the latter file to provide correct paths to the MKL libraries in your system. After doing this, you can proceed with the usual building instructions listed above.

Pay attention to the messages during the building process in order to know whether MKL has been detected or not. Finally, you can check the speed-ups on your machine by running the bench/vml_timing.py script (you can play with different parameters to the set_vml_accuracy_mode() and set_vml_num_threads() functions in the script so as to see how it would affect performance).

Usage

>>> import numpy as np
>>> import numexpr as ne

>>> a = np.arange(1e6)   # Choose large arrays for better speedups
>>> b = np.arange(1e6)

>>> ne.evaluate("a + 1")   # a simple expression
array([  1.00000000e+00,   2.00000000e+00,   3.00000000e+00, ...,
         9.99998000e+05,   9.99999000e+05,   1.00000000e+06])

>>> ne.evaluate('a*b-4.1*a > 2.5*b')   # a more complex one
array([False, False, False, ...,  True,  True,  True], dtype=bool)

>>> ne.evaluate("sin(a) + arcsinh(a/b)")   # you can also use functions
array([        NaN,  1.72284457,  1.79067101, ...,  1.09567006,
        0.17523598, -0.09597844])

>>> s = np.array([b'abba', b'abbb', b'abbcdef'])
>>> ne.evaluate("b'abba' == s")   # string arrays are supported too
array([ True, False, False], dtype=bool)

Documentation

Please see the official documentation at numexpr.readthedocs.io. Included is a user guide, benchmark results, and the reference API.

Authors

Please see AUTHORS.txt.

License

NumExpr is distributed under the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numexpr-2.8.0.tar.gz (95.8 kB view details)

Uploaded Source

Built Distributions

numexpr-2.8.0-cp310-cp310-win_amd64.whl (88.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

numexpr-2.8.0-cp310-cp310-win32.whl (88.2 kB view details)

Uploaded CPython 3.10 Windows x86

numexpr-2.8.0-cp310-cp310-musllinux_1_1_x86_64.whl (930.7 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

numexpr-2.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (380.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numexpr-2.8.0-cp310-cp310-macosx_10_9_x86_64.whl (98.7 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

numexpr-2.8.0-cp39-cp39-win_amd64.whl (88.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

numexpr-2.8.0-cp39-cp39-win32.whl (88.2 kB view details)

Uploaded CPython 3.9 Windows x86

numexpr-2.8.0-cp39-cp39-musllinux_1_1_x86_64.whl (929.6 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

numexpr-2.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (380.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

numexpr-2.8.0-cp39-cp39-macosx_10_9_x86_64.whl (98.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

numexpr-2.8.0-cp38-cp38-win_amd64.whl (88.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

numexpr-2.8.0-cp38-cp38-win32.whl (88.2 kB view details)

Uploaded CPython 3.8 Windows x86

numexpr-2.8.0-cp38-cp38-musllinux_1_1_x86_64.whl (931.3 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

numexpr-2.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (381.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

numexpr-2.8.0-cp38-cp38-macosx_10_9_x86_64.whl (98.7 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

numexpr-2.8.0-cp37-cp37m-win_amd64.whl (88.4 kB view details)

Uploaded CPython 3.7m Windows x86-64

numexpr-2.8.0-cp37-cp37m-win32.whl (88.1 kB view details)

Uploaded CPython 3.7m Windows x86

numexpr-2.8.0-cp37-cp37m-musllinux_1_1_x86_64.whl (930.5 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

numexpr-2.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (379.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

numexpr-2.8.0-cp37-cp37m-macosx_10_9_x86_64.whl (101.7 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

numexpr-2.8.0-cp36-cp36m-win_amd64.whl (88.4 kB view details)

Uploaded CPython 3.6m Windows x86-64

numexpr-2.8.0-cp36-cp36m-win32.whl (88.1 kB view details)

Uploaded CPython 3.6m Windows x86

numexpr-2.8.0-cp36-cp36m-musllinux_1_1_x86_64.whl (928.3 kB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

numexpr-2.8.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (378.1 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

numexpr-2.8.0-cp36-cp36m-macosx_10_9_x86_64.whl (101.7 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file numexpr-2.8.0.tar.gz.

File metadata

  • Download URL: numexpr-2.8.0.tar.gz
  • Upload date:
  • Size: 95.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.0.tar.gz
Algorithm Hash digest
SHA256 9fec076b76c90a5f3929373f548834bb203c6d23a81a895e60d0fe9cca075e99
MD5 b92fa723aa3791df2e562a3d7cc051ac
BLAKE2b-256 6f184f07b0f5effb3b6fe4611738c15ce208f36dfe140c1f3ba1f28e62294717

See more details on using hashes here.

File details

Details for the file numexpr-2.8.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.8.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 88.5 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 3b429e69572e57ce7476de3bac984f237d980b28bfce72cb610ade0e7ae6442d
MD5 79e09ab3243fc6af70c75d5f36d0ebe5
BLAKE2b-256 df5d114ef60d97d4cabb6bf10819a328633868cbdffb232c4e1f58729d2b9be8

See more details on using hashes here.

File details

Details for the file numexpr-2.8.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: numexpr-2.8.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 88.2 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 217e04783abaedfc8173f3f0aef555db5ce81c210e23f3ea695cc523b41da638
MD5 bfd20b9da8ccdf5e6ea02e7c683bc71d
BLAKE2b-256 edfd172ab7db3a3997e2d6c67f2c4287a2d9442bb59a900cf88bfaecf2e8f58b

See more details on using hashes here.

File details

Details for the file numexpr-2.8.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.8.0-cp310-cp310-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 930.7 kB
  • Tags: CPython 3.10, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6e0cc5d65b02eff4aa3d37da005597871915b977800892c149b82495c141b630
MD5 e107dcf2707618cfbf25a693647150ea
BLAKE2b-256 37beffc822e4e83dde6813cf36080fa106342e3be112f5dde43cc56ece4bbe81

See more details on using hashes here.

File details

Details for the file numexpr-2.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7c604b695f07e49e6ac58a2eb9dca0dae8b9cb115e3cd6148b28c7be1c49249d
MD5 72b76c076afa5d1aa48433cf50d316c2
BLAKE2b-256 28173e7a34cf7acde4445545a69356ee1e769cfb2c2b6c74c43ae1dbdeebfa56

See more details on using hashes here.

File details

Details for the file numexpr-2.8.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numexpr-2.8.0-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 98.7 kB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9c99f207cef209f5dd42c7f389753e9ace24b9e306a278264581b5390dd9e7d6
MD5 b360c5154514ebe51e0e5e6095a72421
BLAKE2b-256 357af476a1820f82bca9304ad3afd35a21387ac5f37b1df132f1945b34a7bc51

See more details on using hashes here.

File details

Details for the file numexpr-2.8.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.8.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 88.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 cebc549dbe99eeee4be9a6ab12f19366c14d88686041db3b97093aa60b5834be
MD5 cf6e0120994a6bff2b4f1a1e235570f3
BLAKE2b-256 460c35b998626dad183402d5a9dd0e50d1d916409a74ae61008fe2f1fad01334

See more details on using hashes here.

File details

Details for the file numexpr-2.8.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: numexpr-2.8.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 88.2 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 6e0be6495b92447459f1f0c6b270624a489a1e434a9c8f68950e1450cb825f38
MD5 f5e811c5bf2f84c89c460144871884a4
BLAKE2b-256 1675e7854d8076ec661d63f93740e166346a4a1d13f0ff7b0511ba2136e07540

See more details on using hashes here.

File details

Details for the file numexpr-2.8.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.8.0-cp39-cp39-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 929.6 kB
  • Tags: CPython 3.9, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 cb2bee19e39c73110b9f12a83ffd1438c13e487ef2237985c0434c67243a4aa5
MD5 8d71bea5049f696de0f6c0bbd50b6903
BLAKE2b-256 3f34fb45549a06fcffcb78e9dd925f1aa0d1913d9a1c6783149f9105ceb90a7a

See more details on using hashes here.

File details

Details for the file numexpr-2.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 078ae8c6b7028a893f72bd8a88cdda1f12e08dfa1eb67783a41da360524ca5dc
MD5 42fca5574567c1baaca74a5ceb0d2f4d
BLAKE2b-256 a1d9dc0f6d6b2e4087c2b1e3af6af38297718b21e9a45765e13512e6b01a176b

See more details on using hashes here.

File details

Details for the file numexpr-2.8.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numexpr-2.8.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 98.7 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2d8cc7181c6bbe315781aed5895a4a5e90d161841ded1deb792be1fd2b1a539f
MD5 92793d58e9ac512a52af5487d54508b3
BLAKE2b-256 202665431b9df9f18882903ff5fbc8163c1f3a915a42a76c042688f1f2167d46

See more details on using hashes here.

File details

Details for the file numexpr-2.8.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.8.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 88.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d9caca66cfc5bfcba22e94414408bcd89c036d66c63fca313d5bfd6712d2b9de
MD5 4d08ea3776f06c4c544841de175e6221
BLAKE2b-256 fd1525432603c9fee8b4746c879d773ae126bf860cfc7836028ce9b6b5f7c264

See more details on using hashes here.

File details

Details for the file numexpr-2.8.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: numexpr-2.8.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 88.2 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 7143a7e0a5db48d4302e12280f04a886c367f8cea19dccd009be6bbefa4bbc0c
MD5 68337bd8948b89c92a83e4355f34126e
BLAKE2b-256 9ea99aac016ca261e335a4d63fa34366f0322f30b93220d6807cf0738f793018

See more details on using hashes here.

File details

Details for the file numexpr-2.8.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.8.0-cp38-cp38-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 931.3 kB
  • Tags: CPython 3.8, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 edbb4cbd4c0a1976bd3dff856f88e6477dfd2d843e0927f85cdc964d5c8544f5
MD5 344b6b829f9e42c5fcfc5d54af1c1e55
BLAKE2b-256 090c6107cb8bc9e3ebc9f6defac770bdc68cd5cfcdadde6c111e381907b1a5fb

See more details on using hashes here.

File details

Details for the file numexpr-2.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0bdec52a27cc7945cf58650f585bdc3e9089f097190c31cd061dd80b864484bb
MD5 39f7945a204fe09aa6c1bc74e0e7f3d8
BLAKE2b-256 3e3e65b37d41c037c3d1c188cfb915839edad6694ab163dffa2e4b0839bab466

See more details on using hashes here.

File details

Details for the file numexpr-2.8.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numexpr-2.8.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 98.7 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 09b69583b694466c2f02311a69c35e35e59fed2842decd8926aaf6466478fad6
MD5 ba68a0bd744687c28da031c24cf027a9
BLAKE2b-256 086f1d8053c9a90805c492f070d3b1607cfcc2ba5b5b5e754abb63b4fe841100

See more details on using hashes here.

File details

Details for the file numexpr-2.8.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.8.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 88.4 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 f7ae9a282bce5b5a184ddc1572bc23fa1e656fb45511a574bccb2b9aad907b1c
MD5 5c98e28a332dca918db342629988d059
BLAKE2b-256 80827bea402db30db92c675799ec22c2b87524f332e2bbe49e8de352bfa57586

See more details on using hashes here.

File details

Details for the file numexpr-2.8.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: numexpr-2.8.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 88.1 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 2c8f548690a302db859f5b79c057d8fe552f95c0f40f36804f9bda02ec660917
MD5 00da676353e47b99abc8e7d3a176e350
BLAKE2b-256 8892c4a1dcc7f609ae67530e3cdacac3a353818b8ca1d33c3153543dadfc257b

See more details on using hashes here.

File details

Details for the file numexpr-2.8.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.8.0-cp37-cp37m-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 930.5 kB
  • Tags: CPython 3.7m, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1150ffee400f23b413c07ed739e2d7e63df2049739535916972769c86f3feb09
MD5 7ddc5dddc61eff210a5d5f4ddaaef358
BLAKE2b-256 31054bd3e34ebe19c714e9f3cfcfd147be749e7a5647716a597d48da23c1a6a5

See more details on using hashes here.

File details

Details for the file numexpr-2.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a96293ab134d09aeb3b8b09cf2745ed1debbf3a3aa7071bcca93c9d0c9dcf3f9
MD5 af4a95bacd1200e3f4b66c0c7c56cc9e
BLAKE2b-256 5d12bee29d112f4e82c6ca74a522f23e00aff6cae777e7444e5323ad2e81c1e6

See more details on using hashes here.

File details

Details for the file numexpr-2.8.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numexpr-2.8.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 101.7 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ab63acfbe55c05f33dc5d33fde1449434b458a40a1ee9324897c27dc0629794d
MD5 939ebfd10b498174a50f2e517ab3f6fd
BLAKE2b-256 aeba6111a7d70087906b9650865b515c112b7bd11c1793f7b4e799b3484ff13e

See more details on using hashes here.

File details

Details for the file numexpr-2.8.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.8.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 88.4 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 4979cdea3814dd4519cf413c13ed705114c41f4d5a70d490ef0f4904255e93fd
MD5 5fd2914004eac0bb31a7d6d7a9bb1930
BLAKE2b-256 799616782dd320285023e1a1abc8b388f23d29fa337c9c66e5053a2cdbe885fd

See more details on using hashes here.

File details

Details for the file numexpr-2.8.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: numexpr-2.8.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 88.1 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 4e74eb1ccdd96b7726b34b018c0f210486dacc3de86bb86b808b1abd25b535e6
MD5 573ea809ad5ede27387aad18b3fad83f
BLAKE2b-256 46837159b13ac59c5fd1d4b9240bf3348b1a393ad347f77f189b672f578fee35

See more details on using hashes here.

File details

Details for the file numexpr-2.8.0-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: numexpr-2.8.0-cp36-cp36m-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 928.3 kB
  • Tags: CPython 3.6m, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.0-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 142dabece2a223cf744f0afe633016ae56d4992a0798258e62da5b503e87ebed
MD5 395c8829703c8786e7054d881eb904ac
BLAKE2b-256 12f1f7b16cef9cfd78ccfdafd9e3667dabe0840f74cb767dc94795a63b4797a7

See more details on using hashes here.

File details

Details for the file numexpr-2.8.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b70369863c5f1fcee22ef8979317067e2baa84659194c733632f58e89bab729f
MD5 8d8b81d4e94566f6dacd1544ad8f620a
BLAKE2b-256 f24816bfa2ec6bcf957f54fd0af21ed0ecf23edc34995d9d4d95f4b6bcde4179

See more details on using hashes here.

File details

Details for the file numexpr-2.8.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numexpr-2.8.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 101.7 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3be075577725c23bf1e50501ecc095421ac4e3e5f75bd4842dd1e928cd4f4bdd
MD5 7e2ac9252d87488e37337f5f25898d40
BLAKE2b-256 c2b3a39444198842915df2dbc77562ccd691c53341865a220fadcf78d8248861

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page