Skip to main content

Fast numerical expression evaluator for NumPy

Project description

Author:

David M. Cooke, Francesc Alted, and others.

Maintainer:

Robert A. McLeod

Contact:
robbmcleod@gmail.com
URL:

https://github.com/pydata/numexpr

Documentation:

http://numexpr.readthedocs.io/en/latest/

Travis CI:

travis

GitHub Actions:

actions

PyPi:

version

DOI:

doi

readthedocs:

docs

What is NumExpr?

NumExpr is a fast numerical expression evaluator for NumPy. With it, expressions that operate on arrays (like '3*a+4*b') are accelerated and use less memory than doing the same calculation in Python.

In addition, its multi-threaded capabilities can make use of all your cores – which generally results in substantial performance scaling compared to NumPy.

Last but not least, numexpr can make use of Intel’s VML (Vector Math Library, normally integrated in its Math Kernel Library, or MKL). This allows further acceleration of transcendent expressions.

How NumExpr achieves high performance

The main reason why NumExpr achieves better performance than NumPy is that it avoids allocating memory for intermediate results. This results in better cache utilization and reduces memory access in general. Due to this, NumExpr works best with large arrays.

NumExpr parses expressions into its own op-codes that are then used by an integrated computing virtual machine. The array operands are split into small chunks that easily fit in the cache of the CPU and passed to the virtual machine. The virtual machine then applies the operations on each chunk. It’s worth noting that all temporaries and constants in the expression are also chunked. Chunks are distributed among the available cores of the CPU, resulting in highly parallelized code execution.

The result is that NumExpr can get the most of your machine computing capabilities for array-wise computations. Common speed-ups with regard to NumPy are usually between 0.95x (for very simple expressions like 'a + 1') and 4x (for relatively complex ones like 'a*b-4.1*a > 2.5*b'), although much higher speed-ups can be achieved for some functions and complex math operations (up to 15x in some cases).

NumExpr performs best on matrices that are too large to fit in L1 CPU cache. In order to get a better idea on the different speed-ups that can be achieved on your platform, run the provided benchmarks.

Installation

From wheels

NumExpr is available for install via pip for a wide range of platforms and Python versions (which may be browsed at: https://pypi-hypernode.com/project/numexpr/#files). Installation can be performed as:

pip install numexpr

If you are using the Anaconda or Miniconda distribution of Python you may prefer to use the conda package manager in this case:

conda install numexpr

From Source

On most Nix systems your compilers will already be present. However if you are using a virtual environment with a substantially newer version of Python than your system Python you may be prompted to install a new version of `gcc or clang.

For Windows, you will need to install the Microsoft Visual C++ Build Tools (which are free) first.The version depends on which version of Python you have installed:

https://wiki.python.org/moin/WindowsCompilers

For Python 3.6+ simply installating the latest version of MSVC build tools should be sufficient. Note that wheels found via pip do not include MKL support. Wheels available via conda will have MKL, if the MKL backend is used for NumPy.

See requirements.txt for the required version of NumPy.

NumExpr is built in the standard Python way:

python setup.py build install

You can test numexpr with:

python -c "import numexpr; numexpr.test()"

Do not test NumExpr in the source directory or you will generate import errors.

Enable Intel® MKL support

NumExpr includes support for Intel’s MKL library. This may provide better performance on Intel architectures, mainly when evaluating transcendental functions (trigonometrical, exponential…).

If you have Intel’s MKL, copy the site.cfg.example that comes with the distribution to site.cfg and edit the latter file to provide correct paths to the MKL libraries in your system. After doing this, you can proceed with the usual building instructions listed above.

Pay attention to the messages during the building process in order to know whether MKL has been detected or not. Finally, you can check the speed-ups on your machine by running the bench/vml_timing.py script (you can play with different parameters to the set_vml_accuracy_mode() and set_vml_num_threads() functions in the script so as to see how it would affect performance).

Usage

>>> import numpy as np
>>> import numexpr as ne

>>> a = np.arange(1e6)   # Choose large arrays for better speedups
>>> b = np.arange(1e6)

>>> ne.evaluate("a + 1")   # a simple expression
array([  1.00000000e+00,   2.00000000e+00,   3.00000000e+00, ...,
         9.99998000e+05,   9.99999000e+05,   1.00000000e+06])

>>> ne.evaluate('a*b-4.1*a > 2.5*b')   # a more complex one
array([False, False, False, ...,  True,  True,  True], dtype=bool)

>>> ne.evaluate("sin(a) + arcsinh(a/b)")   # you can also use functions
array([        NaN,  1.72284457,  1.79067101, ...,  1.09567006,
        0.17523598, -0.09597844])

>>> s = np.array([b'abba', b'abbb', b'abbcdef'])
>>> ne.evaluate("b'abba' == s")   # string arrays are supported too
array([ True, False, False], dtype=bool)

Documentation

Please see the official documentation at numexpr.readthedocs.io. Included is a user guide, benchmark results, and the reference API.

Authors

Please see AUTHORS.txt.

License

NumExpr is distributed under the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numexpr-2.8.3.tar.gz (98.4 kB view details)

Uploaded Source

Built Distributions

numexpr-2.8.3-cp310-cp310-win_amd64.whl (92.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

numexpr-2.8.3-cp310-cp310-win32.whl (99.5 kB view details)

Uploaded CPython 3.10 Windows x86

numexpr-2.8.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (381.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numexpr-2.8.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (412.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numexpr-2.8.3-cp310-cp310-macosx_11_0_arm64.whl (90.8 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numexpr-2.8.3-cp310-cp310-macosx_10_9_x86_64.whl (99.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

numexpr-2.8.3-cp39-cp39-win_amd64.whl (92.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

numexpr-2.8.3-cp39-cp39-win32.whl (99.5 kB view details)

Uploaded CPython 3.9 Windows x86

numexpr-2.8.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (380.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

numexpr-2.8.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (411.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

numexpr-2.8.3-cp39-cp39-macosx_11_0_arm64.whl (90.8 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

numexpr-2.8.3-cp39-cp39-macosx_10_9_x86_64.whl (99.0 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

numexpr-2.8.3-cp38-cp38-win_amd64.whl (92.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

numexpr-2.8.3-cp38-cp38-win32.whl (99.5 kB view details)

Uploaded CPython 3.8 Windows x86

numexpr-2.8.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (381.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

numexpr-2.8.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (412.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

numexpr-2.8.3-cp38-cp38-macosx_11_0_arm64.whl (90.8 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

numexpr-2.8.3-cp38-cp38-macosx_10_9_x86_64.whl (99.0 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

numexpr-2.8.3-cp37-cp37m-win_amd64.whl (92.5 kB view details)

Uploaded CPython 3.7m Windows x86-64

numexpr-2.8.3-cp37-cp37m-win32.whl (99.5 kB view details)

Uploaded CPython 3.7m Windows x86

numexpr-2.8.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (379.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

numexpr-2.8.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (410.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

numexpr-2.8.3-cp37-cp37m-macosx_10_9_x86_64.whl (102.0 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file numexpr-2.8.3.tar.gz.

File metadata

  • Download URL: numexpr-2.8.3.tar.gz
  • Upload date:
  • Size: 98.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.3.tar.gz
Algorithm Hash digest
SHA256 cb647c9d9c785dae0759bf6c875cde2bec472b5c3f7a6015734b161ae766d141
MD5 1b9761354a08397f1959d3d79a57f0b5
BLAKE2b-256 b25279f6b7db72b4cb847006d915801cc423c6b57e794c3802cfda648a4c6321

See more details on using hashes here.

File details

Details for the file numexpr-2.8.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.8.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 92.5 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 be9b8309a4a2f785197b1a29f7767a5ff217ea505e5a751b237336f3b50b7e48
MD5 8677fe57f20a53c8f9461fbb9116094f
BLAKE2b-256 51c10a15ec7e0cdeb9b41e187b8b581ffae649e344086cbcba6b2f1682b783fd

See more details on using hashes here.

File details

Details for the file numexpr-2.8.3-cp310-cp310-win32.whl.

File metadata

  • Download URL: numexpr-2.8.3-cp310-cp310-win32.whl
  • Upload date:
  • Size: 99.5 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.3-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 f29b882a21b5381c0e472bc66e8d1c519b8920edc2522b8b4ede79e314d31d20
MD5 b2396343a9cbd7898ce5e87337d47b98
BLAKE2b-256 718f392d21952a816c8df2dc156675a9745c5785ebe1a38e008f1b442a8d0665

See more details on using hashes here.

File details

Details for the file numexpr-2.8.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5532bd7164eb8a05410771faf94a661fc69e5ca72deb8612f1bedc26311ed3c8
MD5 9065c004872ca2f82300764f2b7761c9
BLAKE2b-256 fa035466a707261c7759d2918271b6ded9b3b9177917581d606a5bb3f821a081

See more details on using hashes here.

File details

Details for the file numexpr-2.8.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5b014d1c426c444102fb9eea6438052ee86c82684d27dd20b531caf2c60bc4c9
MD5 e7c5378f3e13c343bd2e77d628f7d430
BLAKE2b-256 799aa34b472bd9ad94c15ee369c4500c6ae5ed680beb849a649f91f87f1e7f6c

See more details on using hashes here.

File details

Details for the file numexpr-2.8.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numexpr-2.8.3-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 90.8 kB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3a1ce79b7d32c55cce334566e3c6716f7b646f6eceb2ace38adaa795848f3583
MD5 7d9eefe0895fc370109e88ba3247f893
BLAKE2b-256 8a7de96acf0ffe0181f9c16ff2261bbbc71347510c0a1831677c724e22c6a8af

See more details on using hashes here.

File details

Details for the file numexpr-2.8.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numexpr-2.8.3-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 99.0 kB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a6954d65d7140864d9bb2302b7580c60c88c4d12e00c59a0a53f1660573e922b
MD5 c805c2068e6a4490a8c05142f5a2c559
BLAKE2b-256 2769047805f751bfa9ce41818724d63aa103bfcf43d0b165c95461b1d491dd1a

See more details on using hashes here.

File details

Details for the file numexpr-2.8.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.8.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 92.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 854541cf4214d747ab2f87229e9dde052fddc52c379f59047d64f9b7e2f4d578
MD5 0dc314adbee7428c465768516f9a075a
BLAKE2b-256 ae7ef39c70c0e8c4591debab1844a883f7328a162ed6c460c61475fe0d797d09

See more details on using hashes here.

File details

Details for the file numexpr-2.8.3-cp39-cp39-win32.whl.

File metadata

  • Download URL: numexpr-2.8.3-cp39-cp39-win32.whl
  • Upload date:
  • Size: 99.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.3-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 4ddc46c1e5d726b57d008169b75074ab66869e1827098614ebafa45d152f81b7
MD5 cd932b3f2a8362244174215a72499791
BLAKE2b-256 9704894c923e9a589676787214b35ee328a75929ff434cabbcdbdc21da5249d9

See more details on using hashes here.

File details

Details for the file numexpr-2.8.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 828926f5d4dc9ace2bebd2eec56bee852518afa31e6df175d1706e6631dfd1a2
MD5 c9cb086c6610d764d62f0a1789701866
BLAKE2b-256 b7e3671625af5597609a413c1c80d11b89de0064549a4adc3e2e5ea5edcae8e5

See more details on using hashes here.

File details

Details for the file numexpr-2.8.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b127b0d0e1665b94adcc658c5f9d688ac4903ef81da5d8f4e956c995cf69d5c7
MD5 3b86ef368b3c23c029bc28eb12832812
BLAKE2b-256 8494ba5479f46a1b2d7c12e2943e010db4619f2bf979703d3615bac95db3d56d

See more details on using hashes here.

File details

Details for the file numexpr-2.8.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numexpr-2.8.3-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 90.8 kB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 052ec3a55cc1ccc447580ee5b828b2bd0bc14fea0756ddb81d9617b5472c77b5
MD5 63115057beb6bb805605879a75bedb76
BLAKE2b-256 bfcaadd8876b0db7f3e9c9239d4b126947e830c7e05c17b67f065a75c14495d2

See more details on using hashes here.

File details

Details for the file numexpr-2.8.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numexpr-2.8.3-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 99.0 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5c660dea90935b963db9529d963493c40fabb2343684b52083fb86b2547d60c8
MD5 ead57c198eeab1c6095d08bd342d77ff
BLAKE2b-256 02f8a33223787909f5ec010ec5b6a1c9bb5c8ac5dfcefc21c1e744492f9551a8

See more details on using hashes here.

File details

Details for the file numexpr-2.8.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.8.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 92.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 eba7fad925e3063a0434844a667fbdea30b53fe1344efef73475b32d33aa0fec
MD5 4228e1cc0825f53a3d6c21181a3498a9
BLAKE2b-256 77cb00c6444e79dfc0a177a0f1e8f47db9965b7e49441593ba16cfb05f746d11

See more details on using hashes here.

File details

Details for the file numexpr-2.8.3-cp38-cp38-win32.whl.

File metadata

  • Download URL: numexpr-2.8.3-cp38-cp38-win32.whl
  • Upload date:
  • Size: 99.5 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.3-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 4f291f0df7b25d9530991f880cc232a644a7a722d130c61b43e593b98fb6523f
MD5 7cd9b3f6d5962705ba75f9b3f5eb54c1
BLAKE2b-256 9ad9d9357e3d1f8e48f467759417f80861c0be1279434ee3d5540075a67ee4ef

See more details on using hashes here.

File details

Details for the file numexpr-2.8.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 08d8f8e31647815d979185eb455cb5b4d845e20ff808bd6f7f4edf5e0a35e2f6
MD5 176db9feb0cfae178c471c10b32ca731
BLAKE2b-256 574244e2dc6f3721c90a395d038c26eee53ce3f71e7dc7be76757e17fd54ca4b

See more details on using hashes here.

File details

Details for the file numexpr-2.8.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cbd75ac287923bd0c5b95143915648c62d97f994b06dacd770bd205da014f6bd
MD5 2923c4cb4a0bd3566bfceb2af6c5ce9a
BLAKE2b-256 271184fb9b4d4732629d70f07c3b011140a3229f21a825294348c01efb1d4b7b

See more details on using hashes here.

File details

Details for the file numexpr-2.8.3-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numexpr-2.8.3-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 90.8 kB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.3-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1575a35190d650bf64d2efd8590a8ef3ca564ef20b9f8727428b57759712becb
MD5 d0fab4bc31c683922e9eabdf3d257a68
BLAKE2b-256 35560dc57b15e266407dfbbe0abebffb492c1da8302c9bd4f9e511d49943efd8

See more details on using hashes here.

File details

Details for the file numexpr-2.8.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numexpr-2.8.3-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 99.0 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c35669268f602ac6412c8c6244b256ebb4f31ffc926b936ca0d9cffda251db8a
MD5 39caa93c8078919b0f1e78489b2e145a
BLAKE2b-256 6beb17d3d96edb768377fd8a7bc252fc3dc6b9c9f7e682f2ce26aefabb3a0774

See more details on using hashes here.

File details

Details for the file numexpr-2.8.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.8.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 92.5 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 fe6b49631c3bf54e92b0fb334c8e59694685924492d80c325e1b44ecbbc0f22d
MD5 82e3fc41157aaaa3d2233033c5fdf1e3
BLAKE2b-256 b5cfb2b0540c2413153cf04b8276817a564cb25037caccfd569c67519591c7c0

See more details on using hashes here.

File details

Details for the file numexpr-2.8.3-cp37-cp37m-win32.whl.

File metadata

  • Download URL: numexpr-2.8.3-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 99.5 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.3-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 19cd7563421862de85404bd5de06bee8a3ebff4fc9f718de09cc704bc3348f08
MD5 76f3f378c3a8f1e5c243ae688a6ede49
BLAKE2b-256 8a769d323451469592893d0b142073a0409b48b5c30b8ecb91214da4b5e0418d

See more details on using hashes here.

File details

Details for the file numexpr-2.8.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ba9aa03f4213f4e0c0d964afd6a920c9000e73d22b88c72c46b151d292ee5581
MD5 712faa8ffde51bf42dbc71d9526b4218
BLAKE2b-256 46cad69f27c7ed3b17b73c6b02b4bc51a259b2e0fc74cb929278c96494e7149f

See more details on using hashes here.

File details

Details for the file numexpr-2.8.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 33be3bbbad71d97d14a39d84957c2bcc368fec775369664d0c24be030c50c359
MD5 e59f075202e10e4954fcdc36b587a595
BLAKE2b-256 e96f762fdee0667be89c9401e62f20738f46d8b2ad8f520d41d90f89ae899fb4

See more details on using hashes here.

File details

Details for the file numexpr-2.8.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numexpr-2.8.3-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 102.0 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 99b9a91811de8cd24bd7d7fbc1883653dad6485e8c683d85b1007a13868713f6
MD5 ffd67152f1a4f320e8f08c44e097ce64
BLAKE2b-256 f98c38d2d770c61c36a1daa29c248d5b1bdbdca2a86a85793c121d73896361e6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page