Skip to main content

Fast numerical expression evaluator for NumPy

Project description

Author:

David M. Cooke, Francesc Alted, and others.

Maintainer:

Robert A. McLeod

Contact:
robbmcleod@gmail.com
URL:

https://github.com/pydata/numexpr

Documentation:

http://numexpr.readthedocs.io/en/latest/

Travis CI:

travis

GitHub Actions:

actions

PyPi:

version

DOI:

doi

readthedocs:

docs

What is NumExpr?

NumExpr is a fast numerical expression evaluator for NumPy. With it, expressions that operate on arrays (like '3*a+4*b') are accelerated and use less memory than doing the same calculation in Python.

In addition, its multi-threaded capabilities can make use of all your cores – which generally results in substantial performance scaling compared to NumPy.

Last but not least, numexpr can make use of Intel’s VML (Vector Math Library, normally integrated in its Math Kernel Library, or MKL). This allows further acceleration of transcendent expressions.

How NumExpr achieves high performance

The main reason why NumExpr achieves better performance than NumPy is that it avoids allocating memory for intermediate results. This results in better cache utilization and reduces memory access in general. Due to this, NumExpr works best with large arrays.

NumExpr parses expressions into its own op-codes that are then used by an integrated computing virtual machine. The array operands are split into small chunks that easily fit in the cache of the CPU and passed to the virtual machine. The virtual machine then applies the operations on each chunk. It’s worth noting that all temporaries and constants in the expression are also chunked. Chunks are distributed among the available cores of the CPU, resulting in highly parallelized code execution.

The result is that NumExpr can get the most of your machine computing capabilities for array-wise computations. Common speed-ups with regard to NumPy are usually between 0.95x (for very simple expressions like 'a + 1') and 4x (for relatively complex ones like 'a*b-4.1*a > 2.5*b'), although much higher speed-ups can be achieved for some functions and complex math operations (up to 15x in some cases).

NumExpr performs best on matrices that are too large to fit in L1 CPU cache. In order to get a better idea on the different speed-ups that can be achieved on your platform, run the provided benchmarks.

Installation

From wheels

NumExpr is available for install via pip for a wide range of platforms and Python versions (which may be browsed at: https://pypi-hypernode.com/project/numexpr/#files). Installation can be performed as:

pip install numexpr

If you are using the Anaconda or Miniconda distribution of Python you may prefer to use the conda package manager in this case:

conda install numexpr

From Source

On most *nix systems your compilers will already be present. However if you are using a virtual environment with a substantially newer version of Python than your system Python you may be prompted to install a new version of gcc or clang.

For Windows, you will need to install the Microsoft Visual C++ Build Tools (which are free) first. The version depends on which version of Python you have installed:

https://wiki.python.org/moin/WindowsCompilers

For Python 3.6+ simply installing the latest version of MSVC build tools should be sufficient. Note that wheels found via pip do not include MKL support. Wheels available via conda will have MKL, if the MKL backend is used for NumPy.

See requirements.txt for the required version of NumPy.

NumExpr is built in the standard Python way:

python setup.py build install

You can test numexpr with:

python -c "import numexpr; numexpr.test()"

Do not test NumExpr in the source directory or you will generate import errors.

Enable Intel® MKL support

NumExpr includes support for Intel’s MKL library. This may provide better performance on Intel architectures, mainly when evaluating transcendental functions (trigonometrical, exponential, …).

If you have Intel’s MKL, copy the site.cfg.example that comes with the distribution to site.cfg and edit the latter file to provide correct paths to the MKL libraries in your system. After doing this, you can proceed with the usual building instructions listed above.

Pay attention to the messages during the building process in order to know whether MKL has been detected or not. Finally, you can check the speed-ups on your machine by running the bench/vml_timing.py script (you can play with different parameters to the set_vml_accuracy_mode() and set_vml_num_threads() functions in the script so as to see how it would affect performance).

Usage

>>> import numpy as np
>>> import numexpr as ne

>>> a = np.arange(1e6)   # Choose large arrays for better speedups
>>> b = np.arange(1e6)

>>> ne.evaluate("a + 1")   # a simple expression
array([  1.00000000e+00,   2.00000000e+00,   3.00000000e+00, ...,
         9.99998000e+05,   9.99999000e+05,   1.00000000e+06])

>>> ne.evaluate('a*b-4.1*a > 2.5*b')   # a more complex one
array([False, False, False, ...,  True,  True,  True], dtype=bool)

>>> ne.evaluate("sin(a) + arcsinh(a/b)")   # you can also use functions
array([        NaN,  1.72284457,  1.79067101, ...,  1.09567006,
        0.17523598, -0.09597844])

>>> s = np.array([b'abba', b'abbb', b'abbcdef'])
>>> ne.evaluate("b'abba' == s")   # string arrays are supported too
array([ True, False, False], dtype=bool)

Documentation

Please see the official documentation at numexpr.readthedocs.io. Included is a user guide, benchmark results, and the reference API.

Authors

Please see AUTHORS.txt.

License

NumExpr is distributed under the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numexpr-2.8.4.tar.gz (98.7 kB view details)

Uploaded Source

Built Distributions

numexpr-2.8.4-cp311-cp311-win_amd64.whl (92.7 kB view details)

Uploaded CPython 3.11 Windows x86-64

numexpr-2.8.4-cp311-cp311-win32.whl (99.7 kB view details)

Uploaded CPython 3.11 Windows x86

numexpr-2.8.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (383.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

numexpr-2.8.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (415.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

numexpr-2.8.4-cp311-cp311-macosx_11_0_arm64.whl (89.2 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

numexpr-2.8.4-cp311-cp311-macosx_10_9_x86_64.whl (100.0 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

numexpr-2.8.4-cp310-cp310-win_amd64.whl (92.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

numexpr-2.8.4-cp310-cp310-win32.whl (99.7 kB view details)

Uploaded CPython 3.10 Windows x86

numexpr-2.8.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (381.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numexpr-2.8.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (412.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numexpr-2.8.4-cp310-cp310-macosx_11_0_arm64.whl (89.2 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numexpr-2.8.4-cp310-cp310-macosx_10_9_x86_64.whl (100.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

numexpr-2.8.4-cp39-cp39-win_amd64.whl (92.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

numexpr-2.8.4-cp39-cp39-win32.whl (99.7 kB view details)

Uploaded CPython 3.9 Windows x86

numexpr-2.8.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (380.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

numexpr-2.8.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (411.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

numexpr-2.8.4-cp39-cp39-macosx_11_0_arm64.whl (89.2 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

numexpr-2.8.4-cp39-cp39-macosx_10_9_x86_64.whl (99.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

numexpr-2.8.4-cp38-cp38-win_amd64.whl (92.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

numexpr-2.8.4-cp38-cp38-win32.whl (99.7 kB view details)

Uploaded CPython 3.8 Windows x86

numexpr-2.8.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (381.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

numexpr-2.8.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (412.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

numexpr-2.8.4-cp38-cp38-macosx_11_0_arm64.whl (89.2 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

numexpr-2.8.4-cp38-cp38-macosx_10_9_x86_64.whl (99.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

numexpr-2.8.4-cp37-cp37m-win_amd64.whl (92.7 kB view details)

Uploaded CPython 3.7m Windows x86-64

numexpr-2.8.4-cp37-cp37m-win32.whl (99.6 kB view details)

Uploaded CPython 3.7m Windows x86

numexpr-2.8.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (379.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

numexpr-2.8.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (410.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

numexpr-2.8.4-cp37-cp37m-macosx_10_9_x86_64.whl (102.9 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file numexpr-2.8.4.tar.gz.

File metadata

  • Download URL: numexpr-2.8.4.tar.gz
  • Upload date:
  • Size: 98.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.4.tar.gz
Algorithm Hash digest
SHA256 d5432537418d18691b9115d615d6daa17ee8275baef3edf1afbbf8bc69806147
MD5 274daf459e9cfb26f2dfccf239dfd96b
BLAKE2b-256 45d00d5216512b59f139053f2d6c941598752ac8ad50eb3737e4accca08b3b50

See more details on using hashes here.

File details

Details for the file numexpr-2.8.4-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.8.4-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 92.7 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 3f039321d1c17962c33079987b675fb251b273dbec0f51aac0934e932446ccc3
MD5 003ce962b3c75f002939c1211eceac5c
BLAKE2b-256 1c5c35a70234b9ac280497b4aba22c76b61eb9f987e721342a20a6d972637620

See more details on using hashes here.

File details

Details for the file numexpr-2.8.4-cp311-cp311-win32.whl.

File metadata

  • Download URL: numexpr-2.8.4-cp311-cp311-win32.whl
  • Upload date:
  • Size: 99.7 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.4-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 5538b30199bfc68886d2be18fcef3abd11d9271767a7a69ff3688defe782800a
MD5 be402324123767482f4eea1229d4aaab
BLAKE2b-256 d82a778b276f6909c39ad480e3ae281ab61a4b3ca6826595e511367d7f0cf37e

See more details on using hashes here.

File details

Details for the file numexpr-2.8.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 655d84eb09adfee3c09ecf4a89a512225da153fdb7de13c447404b7d0523a9a7
MD5 3c12135bde31356753b217112ec006ce
BLAKE2b-256 eeea101902550d2a07b365235b5b6e916a0e5b60aa3a538c079fb3da6e12b954

See more details on using hashes here.

File details

Details for the file numexpr-2.8.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ff5835e8af9a212e8480003d731aad1727aaea909926fd009e8ae6a1cba7f141
MD5 6b72ee12a9c206a05e79fa5cc32aa752
BLAKE2b-256 39ba575d3f94e24f8838a4a60a9ffe5b3cbc77bcf761b5b7e196284651b3316a

See more details on using hashes here.

File details

Details for the file numexpr-2.8.4-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.4-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6ee9db7598dd4001138b482342b96d78110dd77cefc051ec75af3295604dde6a
MD5 dd14b01800419084ea209e3a08b84540
BLAKE2b-256 6d9eef65b020c3431233f69f4fd41e80d1faef94df84fe0243d238ed6892de12

See more details on using hashes here.

File details

Details for the file numexpr-2.8.4-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.4-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9400781553541f414f82eac056f2b4c965373650df9694286b9bd7e8d413f8d8
MD5 63d714ddfd74fc02386dab746620c2f6
BLAKE2b-256 6929adde5102c19b25da49b1c32e8c858feb9a2e6fa7ae685057d68956de01a4

See more details on using hashes here.

File details

Details for the file numexpr-2.8.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.8.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 92.7 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6931b1e9d4f629f43c14b21d44f3f77997298bea43790cfcdb4dd98804f90783
MD5 b8c2021a3a8059b9113f7e18f37ad99a
BLAKE2b-256 d2f83442d0b8d445d7c999ac3c3d53a335d0e2a98921eeb8486e3718f1de4d8f

See more details on using hashes here.

File details

Details for the file numexpr-2.8.4-cp310-cp310-win32.whl.

File metadata

  • Download URL: numexpr-2.8.4-cp310-cp310-win32.whl
  • Upload date:
  • Size: 99.7 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.4-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 f3a920bfac2645017110b87ddbe364c9c7a742870a4d2f6120b8786c25dc6db3
MD5 435a4ac2257d7b58b2e3903efc989211
BLAKE2b-256 c6b5e6de16bd8c71eeec60ddd85d32be2be079a5d56a8c41b2372a2d3bf3e171

See more details on using hashes here.

File details

Details for the file numexpr-2.8.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9e34931089a6bafc77aaae21f37ad6594b98aa1085bb8b45d5b3cd038c3c17d9
MD5 9c78ee4ad234afbf7715b022f52ff1f8
BLAKE2b-256 8f343c2fd908056c042704c72e41396352289ccb03d72608633874530a989009

See more details on using hashes here.

File details

Details for the file numexpr-2.8.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7bca95f4473b444428061d4cda8e59ac564dc7dc6a1dea3015af9805c6bc2946
MD5 51f34e099cc28c772f925c83b83528de
BLAKE2b-256 af8fee084776ff9366c6af968184020cccdb8d6e1534ede2dc292f0974ec2837

See more details on using hashes here.

File details

Details for the file numexpr-2.8.4-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.4-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 db93cf1842f068247de631bfc8af20118bf1f9447cd929b531595a5e0efc9346
MD5 b1607721cd899b5d0bb3eaa874ee92e3
BLAKE2b-256 c15ecebc614ed2723f2b4eaa0f6a5bf9b41c4d868cfdd37fec3a1507b05bbbd2

See more details on using hashes here.

File details

Details for the file numexpr-2.8.4-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.4-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a75967d46b6bd56455dd32da6285e5ffabe155d0ee61eef685bbfb8dafb2e484
MD5 badf6cdfee424d244cc9ab99aae64c72
BLAKE2b-256 dd361de0b3965fea4a6e9bf6d0214f813ffd086f27bcb1306d32207ab031137c

See more details on using hashes here.

File details

Details for the file numexpr-2.8.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.8.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 92.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9f096d707290a6a00b6ffdaf581ee37331109fb7b6c8744e9ded7c779a48e517
MD5 08131d9e08d10f69ec3972e2102c9589
BLAKE2b-256 5b342b8447e38035c7929901b5adfad5efec2193e7498ac1673fa98d854f2dc4

See more details on using hashes here.

File details

Details for the file numexpr-2.8.4-cp39-cp39-win32.whl.

File metadata

  • Download URL: numexpr-2.8.4-cp39-cp39-win32.whl
  • Upload date:
  • Size: 99.7 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.4-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 7d71add384adc9119568d7e9ffa8a35b195decae81e0abf54a2b7779852f0637
MD5 bbe0e11c508f276417af79cfac58bcd0
BLAKE2b-256 ac5e7a264059f872f2651e74a3ae5813f13929ec2c7fed4e90ffcb46f2680910

See more details on using hashes here.

File details

Details for the file numexpr-2.8.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 df3a1f6b24214a1ab826e9c1c99edf1686c8e307547a9aef33910d586f626d01
MD5 aec31f20f8cbaf86524688785f4ed25f
BLAKE2b-256 f1dbaaa0379f5854dc2fbc935532a26805c2f2dd0b077216c644e7f36f89148a

See more details on using hashes here.

File details

Details for the file numexpr-2.8.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 17ac9cfe6d0078c5fc06ba1c1bbd20b8783f28c6f475bbabd3cad53683075cab
MD5 fbe6dda5f0b92352c23d646096c9533e
BLAKE2b-256 65f8d2fd1f4c034691b5c8610124e6cf462469e0e34441de332711951970350d

See more details on using hashes here.

File details

Details for the file numexpr-2.8.4-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.4-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 df35324666b693f13a016bc7957de7cc4d8801b746b81060b671bf78a52b9037
MD5 19ec75bfc78aa727db3a14e02aa167ad
BLAKE2b-256 5bc4e4b4ba19f55fce0b264c19181e670b7c8f8815d2d9384b98b56926edced1

See more details on using hashes here.

File details

Details for the file numexpr-2.8.4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 77898fdf3da6bb96aa8a4759a8231d763a75d848b2f2e5c5279dad0b243c8dfe
MD5 7051fdea348d16ceb651d19b026a4a67
BLAKE2b-256 442a2b0a01a7e38f9ad976390b095d398d6f6ccd4250a46808df48776f74d29f

See more details on using hashes here.

File details

Details for the file numexpr-2.8.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.8.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 92.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a6d2d7740ae83ba5f3531e83afc4b626daa71df1ef903970947903345c37bd03
MD5 f7511129ae434f67ae0e2bd80bdad4d0
BLAKE2b-256 f7426db24e1c33d2b8e3891be204f8d09df4197e027790c08c6a6ce59ce3d30c

See more details on using hashes here.

File details

Details for the file numexpr-2.8.4-cp38-cp38-win32.whl.

File metadata

  • Download URL: numexpr-2.8.4-cp38-cp38-win32.whl
  • Upload date:
  • Size: 99.7 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.4-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 b96334fc1748e9ec4f93d5fadb1044089d73fb08208fdb8382ed77c893f0be01
MD5 2698e558caf3fc9fc299de6d45419c14
BLAKE2b-256 6579595364df80acb73d14c834524a6e73f07bae8f5010401d1d92fa3fb7b5fe

See more details on using hashes here.

File details

Details for the file numexpr-2.8.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6c368aa35ae9b18840e78b05f929d3a7b3abccdba9630a878c7db74ca2368339
MD5 4364afe0ba42ef0baccd80869a2f9f80
BLAKE2b-256 907dcb52ea57152908e2e0ca1391f1fd0218e9a256bfd1a8cbf38402c7639bab

See more details on using hashes here.

File details

Details for the file numexpr-2.8.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 90f12cc851240f7911a47c91aaf223dba753e98e46dff3017282e633602e76a7
MD5 df2643e9d52fb31cab41aa96cad339ff
BLAKE2b-256 2c832a7831b88220a22273355c421ba67879e4dbb3f59f5f8e3482df619f7597

See more details on using hashes here.

File details

Details for the file numexpr-2.8.4-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.4-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b076db98ca65eeaf9bd224576e3ac84c05e451c0bd85b13664b7e5f7b62e2c70
MD5 930d5c28cb76c76a8b3b679fa343ce0f
BLAKE2b-256 baedfd0f196b4f9605a9efa89a2b7ec9b230be34e598ba5613e6f67fdcaabcfc

See more details on using hashes here.

File details

Details for the file numexpr-2.8.4-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.4-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b318541bf3d8326682ebada087ba0050549a16d8b3fa260dd2585d73a83d20a7
MD5 385094daedce4acc160004039c188273
BLAKE2b-256 e654f685075eaff648d1935bd770c9ff9b564fdc49a198af69b38057e0f6a32c

See more details on using hashes here.

File details

Details for the file numexpr-2.8.4-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.8.4-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 92.7 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.4-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 eaec59e9bf70ff05615c34a8b8d6c7bd042bd9f55465d7b495ea5436f45319d0
MD5 2dd01200a3402404a6e98df3961e3ce1
BLAKE2b-256 618e9ede476c91be38128c515be640b4847c2c448a7f410fde02b57c9ffbfbf9

See more details on using hashes here.

File details

Details for the file numexpr-2.8.4-cp37-cp37m-win32.whl.

File metadata

  • Download URL: numexpr-2.8.4-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 99.6 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.4

File hashes

Hashes for numexpr-2.8.4-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 a38664e699526cb1687aefd9069e2b5b9387da7feac4545de446141f1ef86f46
MD5 f9139dc96bf9d75bac0862a51f8509b0
BLAKE2b-256 41b734d4e733d2d10b031e5e0327ee4aaed02c7816d34c936514770b58e8b803

See more details on using hashes here.

File details

Details for the file numexpr-2.8.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 845a6aa0ed3e2a53239b89c1ebfa8cf052d3cc6e053c72805e8153300078c0b1
MD5 778fe68a7d495f9f2a6c90a56898e64d
BLAKE2b-256 8cbf8620b8f43f4922af39c9e036eb3aa6fbcf77089115ac3006708821c51943

See more details on using hashes here.

File details

Details for the file numexpr-2.8.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 059546e8f6283ccdb47c683101a890844f667fa6d56258d48ae2ecf1b3875957
MD5 48d37e69d11f63d6dab200ce29f07d67
BLAKE2b-256 0bed9fff5c0b1942f67fa5ee96eefc08e8e69c3a4262469885ebb9d2776ff4f1

See more details on using hashes here.

File details

Details for the file numexpr-2.8.4-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.4-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c867cc36cf815a3ec9122029874e00d8fbcef65035c4a5901e9b120dd5d626a2
MD5 fd9bcf85606a2e7a74c70620c5de71a4
BLAKE2b-256 45c353dd73009afc6dafd783d7a8fc6d63518b24216d594bc058772fbc719e25

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page