Skip to main content

Fast numerical expression evaluator for NumPy

Project description

Author:

David M. Cooke, Francesc Alted, and others.

Maintainer:

Robert A. McLeod

Contact:
robbmcleod@gmail.com
URL:

https://github.com/pydata/numexpr

Documentation:

http://numexpr.readthedocs.io/en/latest/

Travis CI:

travis

GitHub Actions:

actions

PyPi:

version

DOI:

doi

readthedocs:

docs

What is NumExpr?

NumExpr is a fast numerical expression evaluator for NumPy. With it, expressions that operate on arrays (like '3*a+4*b') are accelerated and use less memory than doing the same calculation in Python.

In addition, its multi-threaded capabilities can make use of all your cores – which generally results in substantial performance scaling compared to NumPy.

Last but not least, numexpr can make use of Intel’s VML (Vector Math Library, normally integrated in its Math Kernel Library, or MKL). This allows further acceleration of transcendent expressions.

How NumExpr achieves high performance

The main reason why NumExpr achieves better performance than NumPy is that it avoids allocating memory for intermediate results. This results in better cache utilization and reduces memory access in general. Due to this, NumExpr works best with large arrays.

NumExpr parses expressions into its own op-codes that are then used by an integrated computing virtual machine. The array operands are split into small chunks that easily fit in the cache of the CPU and passed to the virtual machine. The virtual machine then applies the operations on each chunk. It’s worth noting that all temporaries and constants in the expression are also chunked. Chunks are distributed among the available cores of the CPU, resulting in highly parallelized code execution.

The result is that NumExpr can get the most of your machine computing capabilities for array-wise computations. Common speed-ups with regard to NumPy are usually between 0.95x (for very simple expressions like 'a + 1') and 4x (for relatively complex ones like 'a*b-4.1*a > 2.5*b'), although much higher speed-ups can be achieved for some functions and complex math operations (up to 15x in some cases).

NumExpr performs best on matrices that are too large to fit in L1 CPU cache. In order to get a better idea on the different speed-ups that can be achieved on your platform, run the provided benchmarks.

Installation

From wheels

NumExpr is available for install via pip for a wide range of platforms and Python versions (which may be browsed at: https://pypi-hypernode.com/project/numexpr/#files). Installation can be performed as:

pip install numexpr

If you are using the Anaconda or Miniconda distribution of Python you may prefer to use the conda package manager in this case:

conda install numexpr

From Source

On most *nix systems your compilers will already be present. However if you are using a virtual environment with a substantially newer version of Python than your system Python you may be prompted to install a new version of gcc or clang.

For Windows, you will need to install the Microsoft Visual C++ Build Tools (which are free) first. The version depends on which version of Python you have installed:

https://wiki.python.org/moin/WindowsCompilers

For Python 3.6+ simply installing the latest version of MSVC build tools should be sufficient. Note that wheels found via pip do not include MKL support. Wheels available via conda will have MKL, if the MKL backend is used for NumPy.

See requirements.txt for the required version of NumPy.

NumExpr is built in the standard Python way:

python setup.py build install

You can test numexpr with:

python -c "import numexpr; numexpr.test()"

Do not test NumExpr in the source directory or you will generate import errors.

Enable Intel® MKL support

NumExpr includes support for Intel’s MKL library. This may provide better performance on Intel architectures, mainly when evaluating transcendental functions (trigonometrical, exponential, …).

If you have Intel’s MKL, copy the site.cfg.example that comes with the distribution to site.cfg and edit the latter file to provide correct paths to the MKL libraries in your system. After doing this, you can proceed with the usual building instructions listed above.

Pay attention to the messages during the building process in order to know whether MKL has been detected or not. Finally, you can check the speed-ups on your machine by running the bench/vml_timing.py script (you can play with different parameters to the set_vml_accuracy_mode() and set_vml_num_threads() functions in the script so as to see how it would affect performance).

Usage

>>> import numpy as np
>>> import numexpr as ne

>>> a = np.arange(1e6)   # Choose large arrays for better speedups
>>> b = np.arange(1e6)

>>> ne.evaluate("a + 1")   # a simple expression
array([  1.00000000e+00,   2.00000000e+00,   3.00000000e+00, ...,
         9.99998000e+05,   9.99999000e+05,   1.00000000e+06])

>>> ne.evaluate('a*b-4.1*a > 2.5*b')   # a more complex one
array([False, False, False, ...,  True,  True,  True], dtype=bool)

>>> ne.evaluate("sin(a) + arcsinh(a/b)")   # you can also use functions
array([        NaN,  1.72284457,  1.79067101, ...,  1.09567006,
        0.17523598, -0.09597844])

>>> s = np.array([b'abba', b'abbb', b'abbcdef'])
>>> ne.evaluate("b'abba' == s")   # string arrays are supported too
array([ True, False, False], dtype=bool)

Documentation

Please see the official documentation at numexpr.readthedocs.io. Included is a user guide, benchmark results, and the reference API.

Authors

Please see AUTHORS.txt.

License

NumExpr is distributed under the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numexpr-2.8.5.tar.gz (101.7 kB view details)

Uploaded Source

Built Distributions

numexpr-2.8.5-cp311-cp311-win_amd64.whl (94.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

numexpr-2.8.5-cp311-cp311-win32.whl (101.8 kB view details)

Uploaded CPython 3.11 Windows x86

numexpr-2.8.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (385.4 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

numexpr-2.8.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (417.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

numexpr-2.8.5-cp311-cp311-macosx_11_0_arm64.whl (90.9 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

numexpr-2.8.5-cp311-cp311-macosx_10_9_x86_64.whl (101.8 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

numexpr-2.8.5-cp310-cp310-win_amd64.whl (94.4 kB view details)

Uploaded CPython 3.10 Windows x86-64

numexpr-2.8.5-cp310-cp310-win32.whl (101.8 kB view details)

Uploaded CPython 3.10 Windows x86

numexpr-2.8.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (383.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numexpr-2.8.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (414.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numexpr-2.8.5-cp310-cp310-macosx_11_0_arm64.whl (90.9 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numexpr-2.8.5-cp310-cp310-macosx_10_9_x86_64.whl (101.8 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

numexpr-2.8.5-cp39-cp39-win_amd64.whl (94.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

numexpr-2.8.5-cp39-cp39-win32.whl (101.8 kB view details)

Uploaded CPython 3.9 Windows x86

numexpr-2.8.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (382.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

numexpr-2.8.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (413.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

numexpr-2.8.5-cp39-cp39-macosx_11_0_arm64.whl (90.9 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

numexpr-2.8.5-cp39-cp39-macosx_10_9_x86_64.whl (101.8 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

numexpr-2.8.5-cp38-cp38-win_amd64.whl (94.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

numexpr-2.8.5-cp38-cp38-win32.whl (101.8 kB view details)

Uploaded CPython 3.8 Windows x86

numexpr-2.8.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (383.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

numexpr-2.8.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (415.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

numexpr-2.8.5-cp38-cp38-macosx_11_0_arm64.whl (90.9 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

numexpr-2.8.5-cp38-cp38-macosx_10_9_x86_64.whl (101.8 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

numexpr-2.8.5-cp37-cp37m-win_amd64.whl (94.4 kB view details)

Uploaded CPython 3.7m Windows x86-64

numexpr-2.8.5-cp37-cp37m-win32.whl (101.8 kB view details)

Uploaded CPython 3.7m Windows x86

numexpr-2.8.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (381.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

numexpr-2.8.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (412.8 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

numexpr-2.8.5-cp37-cp37m-macosx_10_9_x86_64.whl (104.7 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file numexpr-2.8.5.tar.gz.

File metadata

  • Download URL: numexpr-2.8.5.tar.gz
  • Upload date:
  • Size: 101.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for numexpr-2.8.5.tar.gz
Algorithm Hash digest
SHA256 45ed41e55a0abcecf3d711481e12a5fb7a904fe99d42bc282a17cc5f8ea510be
MD5 47669fd224874f77bef67e8431267902
BLAKE2b-256 b6fcfcebfd2d8dd51ba015e9d749d493b088e440b820583c860d30ed5b5cd3be

See more details on using hashes here.

File details

Details for the file numexpr-2.8.5-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.8.5-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 94.4 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for numexpr-2.8.5-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 783324ba40eb804ecfc9ebae86120a1e339ab112d0ab8a1f0d48a26354d5bf9b
MD5 d294dc190e67609ed9e003465e7e5818
BLAKE2b-256 1dd86fa2ee6ca4d964c3a99cd609fb79c6f4dd4633afd6d36e9c02e10441b9be

See more details on using hashes here.

File details

Details for the file numexpr-2.8.5-cp311-cp311-win32.whl.

File metadata

  • Download URL: numexpr-2.8.5-cp311-cp311-win32.whl
  • Upload date:
  • Size: 101.8 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for numexpr-2.8.5-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 dd57ab1a3d3aaa9274aff1cefbf93b8ddacc7973afef5b125905f6bf18fabab0
MD5 d9d006a51159eb9399b9bc2adca43c84
BLAKE2b-256 487cb1e0b91022eeb5205e24d9eefdb7f0492e88e515e7d1098df1ce93659dbd

See more details on using hashes here.

File details

Details for the file numexpr-2.8.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ef621b4ee366a5c6a484f6678c9259f5b826569f8bfa0b89ba2306d5055468bb
MD5 320f807fea2492b40a37552fc4c6bf92
BLAKE2b-256 f4fddcc3664f5e0c8f4ffbcf20a3e8db6ecb265b409c0fddd77baa0009fa4fec

See more details on using hashes here.

File details

Details for the file numexpr-2.8.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 578fe4008e4d5d6ff01bbeb2d7b7ba1ec658a5cda9c720cd26a9a8325f8ef438
MD5 c95864e7d8f224f51778553cf409e7b6
BLAKE2b-256 3c05e2f1efdfd814c199773401a702594d5ba9a28d66c9eaf3371ed47c2fc436

See more details on using hashes here.

File details

Details for the file numexpr-2.8.5-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.5-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 178b85ad373c6903e55d75787d61b92380439b70d94b001cb055a501b0821335
MD5 83dffcae742595a2b0966828b741c283
BLAKE2b-256 007be9cbb3a7fd7baa3fadfa1e710fdd6be939d106d25058b43ea49da1ec6229

See more details on using hashes here.

File details

Details for the file numexpr-2.8.5-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.5-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6df184d40d4cf9f21c71f429962f39332f7398147762588c9f3a5c77065d0c06
MD5 b7c6c2c37c841adb4456075ad5496360
BLAKE2b-256 cd7ee96c5d882dcdb63a65188cfd23b2b89f2606a859db1fe4a16169af0b13bf

See more details on using hashes here.

File details

Details for the file numexpr-2.8.5-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.8.5-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 94.4 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for numexpr-2.8.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 894b027438b8ec88dea32a19193716c79f4ff8ddb92302dcc9731b51ba3565a8
MD5 f84e4b51a39976689410f616a3129c3e
BLAKE2b-256 a10d17846f5302a9c627835a37df69a9a893e79905006a8e022cac6c2efafe6f

See more details on using hashes here.

File details

Details for the file numexpr-2.8.5-cp310-cp310-win32.whl.

File metadata

  • Download URL: numexpr-2.8.5-cp310-cp310-win32.whl
  • Upload date:
  • Size: 101.8 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for numexpr-2.8.5-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 c46350dcdb93e32f033eea5a21269514ffcaf501d9abd6036992d37e48a308b0
MD5 756b3dd0c5ddc65cd06ca6842ab7fa42
BLAKE2b-256 3dca6d60ca5f492a1ef5b203d64e2b71072c7224a47626b92bbc9060eda47193

See more details on using hashes here.

File details

Details for the file numexpr-2.8.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3c00be69f747f44a631830215cab482f0f77f75af2925695adff57c1cc0f9a68
MD5 8be321f50b0cd1089d40f3f0c03d60ee
BLAKE2b-256 57c7eb746d20c1a3c85ef6e4743e9e61d1ff8709bea3b28da64100e848c10fdb

See more details on using hashes here.

File details

Details for the file numexpr-2.8.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bf85ba1327eb87ec82ae7936f13c8850fb969a0ca34f3ba9fa3897c09d5c80d7
MD5 3492c74af4dc8961034e31e9029e1d44
BLAKE2b-256 3f75c5f46543f2f7867e665c5bb49f89401e898667c7942f94e60abd70d145a7

See more details on using hashes here.

File details

Details for the file numexpr-2.8.5-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.5-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 de29c77f674e4eb8f0846525a475cab64008c227c8bc4ba5153ab3f72441cc63
MD5 4295dd2e122ffbfda813c8e8384443d1
BLAKE2b-256 56edee046f0cd9d9a01002f4c2efa5f78dcb9e4e7a078d88ea182a79e8ef1ce3

See more details on using hashes here.

File details

Details for the file numexpr-2.8.5-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.5-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 51f3ab160c3847ebcca93cd88f935a7802b54a01ab63fe93152994a64d7a6cf2
MD5 5bb2b6d2b196ffa3b92ef3deaa146914
BLAKE2b-256 883c8af55554773ff8d5ed344050fb09788966c9a5b63e9d8de28b60f5a04fa8

See more details on using hashes here.

File details

Details for the file numexpr-2.8.5-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.8.5-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 94.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for numexpr-2.8.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 283ce8609a7ccbadf91a68f3484558b3e36d27c93c98a41ec205efb0ab43c872
MD5 0ba6ede050821b9c5b2580b370af8034
BLAKE2b-256 411722c110d3935e7201bdb33e9b96f50336cf2d06773d6cd89fdb1bb1214910

See more details on using hashes here.

File details

Details for the file numexpr-2.8.5-cp39-cp39-win32.whl.

File metadata

  • Download URL: numexpr-2.8.5-cp39-cp39-win32.whl
  • Upload date:
  • Size: 101.8 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for numexpr-2.8.5-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 cbfd833ee5fdb0efb862e152aee7e6ccea9c596d5c11d22604c2e6307bff7cad
MD5 b06a76866e944d26e12d0f9b5258b21b
BLAKE2b-256 a7246200b22c035fd241858bb67e3b6ed97597681cc38ca464f4604a8bcbc976

See more details on using hashes here.

File details

Details for the file numexpr-2.8.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aea6ab45c87c0a7041183c08a798f0ad4d7c5eccbce20cfe79ce6f1a45ef3702
MD5 bb05162019f61bf135b50ba123380fb6
BLAKE2b-256 60701863613deba8ebfe14158d33d7f8d431e8771492d5c3574b9988f6a8ef8b

See more details on using hashes here.

File details

Details for the file numexpr-2.8.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4ed0e1c1ef5f34381448539f1fe9015906d21c9cfa2797c06194d4207dadb465
MD5 d9862570b5925ed954b42190c7d0aac0
BLAKE2b-256 3edee7d52e67bbbaaf7c4ddf5ec59036be31cab5a7e0c4b59a956878856f9afd

See more details on using hashes here.

File details

Details for the file numexpr-2.8.5-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.5-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9e8b5bf7bcb4e8dcd66522d8fc96e1db7278f901cb4fd2e155efbe62a41dde08
MD5 4ddac67a2bcd2cc1c345258e67c38810
BLAKE2b-256 71defc32881428735826e48950e90cf67ac14dc6a31abb7b74299791eae1c3fb

See more details on using hashes here.

File details

Details for the file numexpr-2.8.5-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.5-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1510da20e6f5f45333610b1ded44c566e2690c6c437c84f2a212ca09627c7e01
MD5 13d53e9b4c97f963903e5bf0081f0f6d
BLAKE2b-256 6421b94d5cecf4395c12982f055671b00d4070b6465d1af69c8066d5f2f43984

See more details on using hashes here.

File details

Details for the file numexpr-2.8.5-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.8.5-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 94.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for numexpr-2.8.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 55983806815035eb63c5039520688c49536bb7f3cc3fc1d7d64c6a00cf3f353e
MD5 b106329237c4910b1922632152b5621c
BLAKE2b-256 adb06905e1babe8ef4252131c8542df2ea9a58014d1e7264e6531bf93d5e2959

See more details on using hashes here.

File details

Details for the file numexpr-2.8.5-cp38-cp38-win32.whl.

File metadata

  • Download URL: numexpr-2.8.5-cp38-cp38-win32.whl
  • Upload date:
  • Size: 101.8 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for numexpr-2.8.5-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 558390fea6370003ac749ed9d0f38d708aa096f5dcb707ddb6e0ca5a0dd37da1
MD5 dde35a514e4961e5de3bc5d7f2db70b7
BLAKE2b-256 d9bc925fe6b1a658f30884dcd32326a2ce1acca14c8bc7c826dcdd5da57248a1

See more details on using hashes here.

File details

Details for the file numexpr-2.8.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b93f5a866cd13a808bc3d3a9c487d94cd02eec408b275ff0aa150f2e8e5191f8
MD5 a91181e6d71f5074b3266e8a0de6d037
BLAKE2b-256 d2dbc30fb89195ce9d9dbde093c7950df1e340330383b9c27ab066f8a836d123

See more details on using hashes here.

File details

Details for the file numexpr-2.8.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5a8dad2bfaad5a5c34a2e8bbf62b9df1dfab266d345fda1feb20ff4e264b347a
MD5 7a4086918637a5e8de9de8b41b58ab24
BLAKE2b-256 2b4785fcf4c8f8469b5ef4a9af1c4e207f02c032395f7596b0b19a0007ea3cf6

See more details on using hashes here.

File details

Details for the file numexpr-2.8.5-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.5-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 34af2a0e857d02a4bc5758bc037a777d50dacb13bcd57c7905268a3e44994ed6
MD5 852e3e63b0e8de7306ddbfd21540413f
BLAKE2b-256 503607a409a57a1a395c83014914f0ea98b1c6aebc43d0d241795d9f022fe157

See more details on using hashes here.

File details

Details for the file numexpr-2.8.5-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.5-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 eb36ffcfa1606e41aa08d559b4277bcad0e16b83941d1a4fee8d2bd5a34f8e0e
MD5 0b22cb1b361632b736362c6ab0f3bc7f
BLAKE2b-256 4c25e80900acbb3871c7bb102caaf4905ccf95232f9d61624fed40db04f44184

See more details on using hashes here.

File details

Details for the file numexpr-2.8.5-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.8.5-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 94.4 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for numexpr-2.8.5-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 db5c65417d69414f1ab31302ea01d3548303ef31209c38b4849d145be4e1d1ba
MD5 6f2a99d6dbb31de84b03bb0be1d5a060
BLAKE2b-256 b060bad96a8f8b4d6c494e82c4d76c7b1531620e4b0caaa5d2fa459c488d4f32

See more details on using hashes here.

File details

Details for the file numexpr-2.8.5-cp37-cp37m-win32.whl.

File metadata

  • Download URL: numexpr-2.8.5-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 101.8 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for numexpr-2.8.5-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 62b4faf8e0627673b0210a837792bddd23050ecebc98069ab23eb0633ff1ef5f
MD5 ccddc561cf672b2e6d8aa05d49c61b4b
BLAKE2b-256 f80e05530a06bab4d3bb9404f3a0ebd12a4b756e6a40c17ea8a617b47f732f49

See more details on using hashes here.

File details

Details for the file numexpr-2.8.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b594dc9e2d6291a0bc5c065e6d9caf3eee743b5663897832e9b17753c002947a
MD5 cef215b8e3b95de62940fdc4f877578a
BLAKE2b-256 74df78ea89ac5e722fdbcabbfb1f738f2bd1f54049baa678fe7580d908a4e33c

See more details on using hashes here.

File details

Details for the file numexpr-2.8.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 39ce106f92ccea5b07b1d6f2f3c4370f05edf27691dc720a63903484a2137e48
MD5 b8d878997e60457d494e706d6b0c9ee0
BLAKE2b-256 d8e309a0c9f0934bff4f7f061b8b295db26661417c892ffe5bd9f65fcf0d66ce

See more details on using hashes here.

File details

Details for the file numexpr-2.8.5-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.5-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 183d5430db76826e54465c69db93a3c6ecbf03cda5aa1bb96eaad0147e9b68dc
MD5 844eb22c550de1229c45ce8f52659113
BLAKE2b-256 aabe0f132d5c84958ebd43bfbadf4bd3085d3258cc453f87a6bbc459188661bf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page