Skip to main content

Fast numerical expression evaluator for NumPy

Project description

Author:

David M. Cooke, Francesc Alted, and others.

Maintainer:

Robert A. McLeod

Contact:
robbmcleod@gmail.com
URL:

https://github.com/pydata/numexpr

Documentation:

http://numexpr.readthedocs.io/en/latest/

Travis CI:

travis

GitHub Actions:

actions

PyPi:

version

DOI:

doi

readthedocs:

docs

What is NumExpr?

NumExpr is a fast numerical expression evaluator for NumPy. With it, expressions that operate on arrays (like '3*a+4*b') are accelerated and use less memory than doing the same calculation in Python.

In addition, its multi-threaded capabilities can make use of all your cores – which generally results in substantial performance scaling compared to NumPy.

Last but not least, numexpr can make use of Intel’s VML (Vector Math Library, normally integrated in its Math Kernel Library, or MKL). This allows further acceleration of transcendent expressions.

How NumExpr achieves high performance

The main reason why NumExpr achieves better performance than NumPy is that it avoids allocating memory for intermediate results. This results in better cache utilization and reduces memory access in general. Due to this, NumExpr works best with large arrays.

NumExpr parses expressions into its own op-codes that are then used by an integrated computing virtual machine. The array operands are split into small chunks that easily fit in the cache of the CPU and passed to the virtual machine. The virtual machine then applies the operations on each chunk. It’s worth noting that all temporaries and constants in the expression are also chunked. Chunks are distributed among the available cores of the CPU, resulting in highly parallelized code execution.

The result is that NumExpr can get the most of your machine computing capabilities for array-wise computations. Common speed-ups with regard to NumPy are usually between 0.95x (for very simple expressions like 'a + 1') and 4x (for relatively complex ones like 'a*b-4.1*a > 2.5*b'), although much higher speed-ups can be achieved for some functions and complex math operations (up to 15x in some cases).

NumExpr performs best on matrices that are too large to fit in L1 CPU cache. In order to get a better idea on the different speed-ups that can be achieved on your platform, run the provided benchmarks.

Installation

From wheels

NumExpr is available for install via pip for a wide range of platforms and Python versions (which may be browsed at: https://pypi-hypernode.com/project/numexpr/#files). Installation can be performed as:

pip install numexpr

If you are using the Anaconda or Miniconda distribution of Python you may prefer to use the conda package manager in this case:

conda install numexpr

From Source

On most *nix systems your compilers will already be present. However if you are using a virtual environment with a substantially newer version of Python than your system Python you may be prompted to install a new version of gcc or clang.

For Windows, you will need to install the Microsoft Visual C++ Build Tools (which are free) first. The version depends on which version of Python you have installed:

https://wiki.python.org/moin/WindowsCompilers

For Python 3.6+ simply installing the latest version of MSVC build tools should be sufficient. Note that wheels found via pip do not include MKL support. Wheels available via conda will have MKL, if the MKL backend is used for NumPy.

See requirements.txt for the required version of NumPy.

NumExpr is built in the standard Python way:

python setup.py build install

You can test numexpr with:

python -c "import numexpr; numexpr.test()"

Do not test NumExpr in the source directory or you will generate import errors.

Enable Intel® MKL support

NumExpr includes support for Intel’s MKL library. This may provide better performance on Intel architectures, mainly when evaluating transcendental functions (trigonometrical, exponential, …).

If you have Intel’s MKL, copy the site.cfg.example that comes with the distribution to site.cfg and edit the latter file to provide correct paths to the MKL libraries in your system. After doing this, you can proceed with the usual building instructions listed above.

Pay attention to the messages during the building process in order to know whether MKL has been detected or not. Finally, you can check the speed-ups on your machine by running the bench/vml_timing.py script (you can play with different parameters to the set_vml_accuracy_mode() and set_vml_num_threads() functions in the script so as to see how it would affect performance).

Usage

>>> import numpy as np
>>> import numexpr as ne

>>> a = np.arange(1e6)   # Choose large arrays for better speedups
>>> b = np.arange(1e6)

>>> ne.evaluate("a + 1")   # a simple expression
array([  1.00000000e+00,   2.00000000e+00,   3.00000000e+00, ...,
         9.99998000e+05,   9.99999000e+05,   1.00000000e+06])

>>> ne.evaluate('a*b-4.1*a > 2.5*b')   # a more complex one
array([False, False, False, ...,  True,  True,  True], dtype=bool)

>>> ne.evaluate("sin(a) + arcsinh(a/b)")   # you can also use functions
array([        NaN,  1.72284457,  1.79067101, ...,  1.09567006,
        0.17523598, -0.09597844])

>>> s = np.array([b'abba', b'abbb', b'abbcdef'])
>>> ne.evaluate("b'abba' == s")   # string arrays are supported too
array([ True, False, False], dtype=bool)

Documentation

Please see the official documentation at numexpr.readthedocs.io. Included is a user guide, benchmark results, and the reference API.

Authors

Please see AUTHORS.txt.

License

NumExpr is distributed under the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numexpr-2.8.6.tar.gz (102.4 kB view details)

Uploaded Source

Built Distributions

numexpr-2.8.6-cp311-cp311-win_amd64.whl (95.0 kB view details)

Uploaded CPython 3.11 Windows x86-64

numexpr-2.8.6-cp311-cp311-win32.whl (102.4 kB view details)

Uploaded CPython 3.11 Windows x86

numexpr-2.8.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (386.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

numexpr-2.8.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (417.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

numexpr-2.8.6-cp311-cp311-macosx_11_0_arm64.whl (91.5 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

numexpr-2.8.6-cp311-cp311-macosx_10_9_x86_64.whl (102.4 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

numexpr-2.8.6-cp310-cp310-win_amd64.whl (95.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

numexpr-2.8.6-cp310-cp310-win32.whl (102.4 kB view details)

Uploaded CPython 3.10 Windows x86

numexpr-2.8.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (383.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numexpr-2.8.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (415.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numexpr-2.8.6-cp310-cp310-macosx_11_0_arm64.whl (91.5 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numexpr-2.8.6-cp310-cp310-macosx_10_9_x86_64.whl (102.4 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

numexpr-2.8.6-cp39-cp39-win_amd64.whl (95.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

numexpr-2.8.6-cp39-cp39-win32.whl (102.4 kB view details)

Uploaded CPython 3.9 Windows x86

numexpr-2.8.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (383.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

numexpr-2.8.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (414.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

numexpr-2.8.6-cp39-cp39-macosx_11_0_arm64.whl (91.5 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

numexpr-2.8.6-cp39-cp39-macosx_10_9_x86_64.whl (102.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

numexpr-2.8.6-cp38-cp38-win_amd64.whl (95.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

numexpr-2.8.6-cp38-cp38-win32.whl (102.4 kB view details)

Uploaded CPython 3.8 Windows x86

numexpr-2.8.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (384.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

numexpr-2.8.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (415.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

numexpr-2.8.6-cp38-cp38-macosx_11_0_arm64.whl (91.5 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

numexpr-2.8.6-cp38-cp38-macosx_10_9_x86_64.whl (102.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

numexpr-2.8.6-cp37-cp37m-win_amd64.whl (95.0 kB view details)

Uploaded CPython 3.7m Windows x86-64

numexpr-2.8.6-cp37-cp37m-win32.whl (102.3 kB view details)

Uploaded CPython 3.7m Windows x86

numexpr-2.8.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (382.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

numexpr-2.8.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (413.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

numexpr-2.8.6-cp37-cp37m-macosx_10_9_x86_64.whl (105.3 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file numexpr-2.8.6.tar.gz.

File metadata

  • Download URL: numexpr-2.8.6.tar.gz
  • Upload date:
  • Size: 102.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for numexpr-2.8.6.tar.gz
Algorithm Hash digest
SHA256 6336f8dba3f456e41a4ffc3c97eb63d89c73589ff6e1707141224b930263260d
MD5 0de2ff011abde5b29554d7cd8f2210f3
BLAKE2b-256 85d0411a1fac79c7cd56978318b28a7effd8fa56c0056e1878cf41185a0d693c

See more details on using hashes here.

File details

Details for the file numexpr-2.8.6-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.8.6-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 95.0 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for numexpr-2.8.6-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 27782177a0081bd0aab229be5d37674e7f0ab4264ef576697323dd047432a4cd
MD5 6ab408899f045a1c65d2a9c17e186270
BLAKE2b-256 b17ad75f9d2cf4f473601813680abb59b65e7d534671b5ab134f09978eb41883

See more details on using hashes here.

File details

Details for the file numexpr-2.8.6-cp311-cp311-win32.whl.

File metadata

  • Download URL: numexpr-2.8.6-cp311-cp311-win32.whl
  • Upload date:
  • Size: 102.4 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for numexpr-2.8.6-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 681812e2e71ff1ba9145fac42d03f51ddf6ba911259aa83041323f68e7458002
MD5 02d0e504efcc7959542ec9efea2d2056
BLAKE2b-256 cc39c5d61a8dfbdc4502f9b10e19b24bfea2f502e0ff4ee964b70d8da56b3191

See more details on using hashes here.

File details

Details for the file numexpr-2.8.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d36528a33aa9c23743b3ea686e57526a4f71e7128a1be66210e1511b09c4e4e9
MD5 db433640bbfe4e5f7f686b73611e1e0f
BLAKE2b-256 74f53d0392e5b719e19a84fbcd96f7f38668277d2d32023f229245bc3f983d79

See more details on using hashes here.

File details

Details for the file numexpr-2.8.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 84979bf14143351c2db8d9dd7fef8aca027c66ad9df9cb5e75c93bf5f7b5a338
MD5 d6c4302227db8fe5f606e2f58cb13ad0
BLAKE2b-256 f2105bed544e9087cf4fd76f38b0b6bc3f048cf9adfedecdaaea8676ea6eb777

See more details on using hashes here.

File details

Details for the file numexpr-2.8.6-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.6-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 47b45da5aa25600081a649f5e8b2aa640e35db3703f4631f34bb1f2f86d1b5b4
MD5 ce0e96b969a442e41d5f7f2ee36797ad
BLAKE2b-256 b0de8e2d7c242b8ce31809d7f3c3e6f8704ca20f93007ad6d31652f16f474c97

See more details on using hashes here.

File details

Details for the file numexpr-2.8.6-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.6-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 95b9da613761e4fc79748535b2a1f58cada22500e22713ae7d9571fa88d1c2e2
MD5 1bb729cc11ee6114fae8416d2ec0228e
BLAKE2b-256 d1eaa24da71d91188ac2066aa46e0cde57189da3b1d7417896d1a9b796936fca

See more details on using hashes here.

File details

Details for the file numexpr-2.8.6-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.8.6-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 95.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for numexpr-2.8.6-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 18b1804923cfa3be7bbb45187d01c0540c8f6df4928c22a0f786e15568e9ebc5
MD5 a10da2cdddbef5ddfed513e40042b56a
BLAKE2b-256 13906ad47a1f46340196e703c07882017c7f9514f30da5263a5c3d43122598b9

See more details on using hashes here.

File details

Details for the file numexpr-2.8.6-cp310-cp310-win32.whl.

File metadata

  • Download URL: numexpr-2.8.6-cp310-cp310-win32.whl
  • Upload date:
  • Size: 102.4 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for numexpr-2.8.6-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 211804ec25a9f6d188eadf4198dd1a92b2f61d7d20993c6c7706139bc4199c5b
MD5 ad1315a00567ffca7da40e9b9092fe06
BLAKE2b-256 d6c784c3437f1f1ff01f1c83d39ff98aadc1b164f39668cddf6ea7a2cede662d

See more details on using hashes here.

File details

Details for the file numexpr-2.8.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dee04d72307c09599f786b9231acffb10df7d7a74b2ce3681d74a574880d13ce
MD5 2c08c9b844710fdc6c6577912b0ebf3c
BLAKE2b-256 af1fa9bc507c4d53c0be52d2f1334dd79e13dc4663b64709b687a416506c2b86

See more details on using hashes here.

File details

Details for the file numexpr-2.8.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9ef7e8aaa84fce3aba2e65f243d14a9f8cc92aafd5d90d67283815febfe43eeb
MD5 5d2b14007377b383a55a58d6f6f4b3bc
BLAKE2b-256 ba232f52015c3bc14b958ff3e033385c475f921b7a79019ce4b4cc923b119e62

See more details on using hashes here.

File details

Details for the file numexpr-2.8.6-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.6-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6e884687da8af5955dc9beb6a12d469675c90b8fb38b6c93668c989cfc2cd982
MD5 8cd914aab5e5b30db78c2998f2953349
BLAKE2b-256 6f23c6ba40dc401b462b5e19ae1d2e0b7da98f011f043e98081f7e73abe43d3f

See more details on using hashes here.

File details

Details for the file numexpr-2.8.6-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.6-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 80acbfefb68bd92e708e09f0a02b29e04d388b9ae72f9fcd57988aca172a7833
MD5 7b3c582e031cc394620cb15443466d9e
BLAKE2b-256 ccc26ca2535a627be17db60ecd46e68d1f90aac21eb6886594671983fd4ae418

See more details on using hashes here.

File details

Details for the file numexpr-2.8.6-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.8.6-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 95.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for numexpr-2.8.6-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6d7003497d82ef19458dce380b36a99343b96a3bd5773465c2d898bf8f5a38f9
MD5 ecf8ec0c563a2319d30b8d76814f05fe
BLAKE2b-256 2245336708903fb50fd460b20e2361237e9b0524863fd2fccf31ac5ec9b391e0

See more details on using hashes here.

File details

Details for the file numexpr-2.8.6-cp39-cp39-win32.whl.

File metadata

  • Download URL: numexpr-2.8.6-cp39-cp39-win32.whl
  • Upload date:
  • Size: 102.4 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for numexpr-2.8.6-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 c48221b6a85494a7be5a022899764e58259af585dff031cecab337277278cc93
MD5 9486694c46e4f771114a23eb6ab91fc9
BLAKE2b-256 c62b332bb24c83ba5de733c6caca8a52c0a4d05f3e235d176d3f4df0f0588f4d

See more details on using hashes here.

File details

Details for the file numexpr-2.8.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d6a88d71c166e86b98d34701285d23e3e89d548d9f5ae3f4b60919ac7151949f
MD5 47b2665247627f21aca3ded142c6574d
BLAKE2b-256 6a5b4e36b82a51e261d24240e113abc8567e283ccd41d07d2e4b58b19438bf25

See more details on using hashes here.

File details

Details for the file numexpr-2.8.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8564186aad5a2c88d597ebc79b8171b52fd33e9b085013e1ff2208f7e4b387e3
MD5 45d69760f8cb445554f9f1d21cd1112a
BLAKE2b-256 55ffcb63c8441d863b080d56703554ad4863b3557f7f0d3998f570187ca53062

See more details on using hashes here.

File details

Details for the file numexpr-2.8.6-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.6-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8e3e6f1588d6c03877cb3b3dcc3096482da9d330013b886b29cb9586af5af3eb
MD5 e1e138ff74d923a5705f29047a83b54e
BLAKE2b-256 2dde6aa144843eccc812c99dac4cb3d7f145989f8585e6671fe864d0d84fb8a5

See more details on using hashes here.

File details

Details for the file numexpr-2.8.6-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.6-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 aa0f661f5f4872fd7350cc9895f5d2594794b2a7e7f1961649a351724c64acc9
MD5 bbae13a8228befee7ee452ba57d42615
BLAKE2b-256 3f91e8f47dd1ba2306cca5d2feff8fc36241668e3108209d772e0866beec2885

See more details on using hashes here.

File details

Details for the file numexpr-2.8.6-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.8.6-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 95.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for numexpr-2.8.6-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 95c09e814b0d6549de98b5ded7cdf7d954d934bb6b505432ff82e83a6d330bda
MD5 f3e83e6064580bd61c33ff8a7775b8b0
BLAKE2b-256 3428286d73ab378eefc99ef07b208c68d9be968518c8b0ce8067e438c1a84ef1

See more details on using hashes here.

File details

Details for the file numexpr-2.8.6-cp38-cp38-win32.whl.

File metadata

  • Download URL: numexpr-2.8.6-cp38-cp38-win32.whl
  • Upload date:
  • Size: 102.4 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for numexpr-2.8.6-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 15469dc722b5ceb92324ec8635411355ebc702303db901ae8cc87f47c5e3a124
MD5 6a2dfc1e18c727e5a88a13fdf2ac2120
BLAKE2b-256 e73c23d552804ee4cdfac80cfe79e1d43d785cd3d05b9023adf8c185f05acb82

See more details on using hashes here.

File details

Details for the file numexpr-2.8.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1967c16f61c27df1cdc43ba3c0ba30346157048dd420b4259832276144d0f64e
MD5 8729130774bd8bef668734fa5ed1546d
BLAKE2b-256 0d47a2ede0e136a8ddc288b447c260aa035f3e75251f808aa61f6454b16dfd04

See more details on using hashes here.

File details

Details for the file numexpr-2.8.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 38b8b90967026bbc36c7aa6e8ca3b8906e1990914fd21f446e2a043f4ee3bc06
MD5 e7e0cee9a39673c2e44c33ead8826645
BLAKE2b-256 6800c036f442c4fa5013b42d1609a5d934b6b4babe9def9076c75d39a015bc0b

See more details on using hashes here.

File details

Details for the file numexpr-2.8.6-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.6-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c8f37f7a6af3bdd61f2efd1cafcc083a9525ab0aaf5dc641e7ec8fc0ae2d3aa1
MD5 34f0985c987da6cf7fc42ee5b1a6360b
BLAKE2b-256 232f72fd745a748a334b22cc4b9395604f0e92e212c686689b259101756b6a4a

See more details on using hashes here.

File details

Details for the file numexpr-2.8.6-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.6-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b5f96c89aa0b1f13685ec32fa3d71028db0b5981bfd99a0bbc271035949136b3
MD5 032d43949be25ed2536df5e5216672e5
BLAKE2b-256 22251c643b3c6cf9580aaa1c84cb148c7ddf60b390204931c03e91c7fbf89221

See more details on using hashes here.

File details

Details for the file numexpr-2.8.6-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.8.6-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 95.0 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for numexpr-2.8.6-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 31cf610c952eec57081171f0b4427f9bed2395ec70ec432bbf45d260c5c0cdeb
MD5 55d0cc308af8969ab494965d8fdbeba7
BLAKE2b-256 3ac1e3a0cf89473588cba0135eb440cded23d19340f636d0e1017263e8c3d7dd

See more details on using hashes here.

File details

Details for the file numexpr-2.8.6-cp37-cp37m-win32.whl.

File metadata

  • Download URL: numexpr-2.8.6-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 102.3 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for numexpr-2.8.6-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 e93d64cd20940b726477c3cb64926e683d31b778a1e18f9079a5088fd0d8e7c8
MD5 1b3feed6c0b1e71242f3cf345e657913
BLAKE2b-256 111707dc0c5e658f0e3215ac32de5166b577d33157d68dfe927c2cb20ae498fb

See more details on using hashes here.

File details

Details for the file numexpr-2.8.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d126938c2c3784673c9c58d94e00b1570aa65517d9c33662234d442fc9fb5795
MD5 99915d6a5fda96ae6510678958b9d066
BLAKE2b-256 7825e68c311183da46a8f90f7a25c9b64f855acbc88ea0b3387a23ee2e4a650a

See more details on using hashes here.

File details

Details for the file numexpr-2.8.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e640bc0eaf1b59f3dde52bc02bbfda98e62f9950202b0584deba28baf9f36bbb
MD5 294dde2f2a942a6faa42168e82ef2a6c
BLAKE2b-256 047cd286c17711d40610c798e960e447d97500d2bcd6fea5c5ff6edf07ba5a17

See more details on using hashes here.

File details

Details for the file numexpr-2.8.6-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.8.6-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ef6e8896457a60a539cb6ba27da78315a9bb31edb246829b25b5b0304bfcee91
MD5 4772e5ee9fa8afdb2ed691c407660e6e
BLAKE2b-256 531494f8ce2eda9e027fad746a8983bf6f1d333edb548f44c94182af845c59e0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page