Skip to main content

Fast numerical expression evaluator for NumPy

Project description

Author:

David M. Cooke, Francesc Alted, and others.

Maintainer:

Francesc Alted

Contact:
faltet@gmail.com
URL:

https://github.com/pydata/numexpr

Documentation:

http://numexpr.readthedocs.io/en/latest/

Travis CI:

travis

GitHub Actions:

actions

PyPi:

version

DOI:

doi

readthedocs:

docs

What is NumExpr?

NumExpr is a fast numerical expression evaluator for NumPy. With it, expressions that operate on arrays (like '3*a+4*b') are accelerated and use less memory than doing the same calculation in Python.

In addition, its multi-threaded capabilities can make use of all your cores – which generally results in substantial performance scaling compared to NumPy.

Last but not least, numexpr can make use of Intel’s VML (Vector Math Library, normally integrated in its Math Kernel Library, or MKL). This allows further acceleration of transcendent expressions.

How NumExpr achieves high performance

The main reason why NumExpr achieves better performance than NumPy is that it avoids allocating memory for intermediate results. This results in better cache utilization and reduces memory access in general. Due to this, NumExpr works best with large arrays.

NumExpr parses expressions into its own op-codes that are then used by an integrated computing virtual machine. The array operands are split into small chunks that easily fit in the cache of the CPU and passed to the virtual machine. The virtual machine then applies the operations on each chunk. It’s worth noting that all temporaries and constants in the expression are also chunked. Chunks are distributed among the available cores of the CPU, resulting in highly parallelized code execution.

The result is that NumExpr can get the most of your machine computing capabilities for array-wise computations. Common speed-ups with regard to NumPy are usually between 0.95x (for very simple expressions like 'a + 1') and 4x (for relatively complex ones like 'a*b-4.1*a > 2.5*b'), although much higher speed-ups can be achieved for some functions and complex math operations (up to 15x in some cases).

NumExpr performs best on matrices that are too large to fit in L1 CPU cache. In order to get a better idea on the different speed-ups that can be achieved on your platform, run the provided benchmarks.

Installation

From wheels

NumExpr is available for install via pip for a wide range of platforms and Python versions (which may be browsed at: https://pypi-hypernode.com/project/numexpr/#files). Installation can be performed as:

pip install numexpr

If you are using the Anaconda or Miniconda distribution of Python you may prefer to use the conda package manager in this case:

conda install numexpr

From Source

On most *nix systems your compilers will already be present. However if you are using a virtual environment with a substantially newer version of Python than your system Python you may be prompted to install a new version of gcc or clang.

For Windows, you will need to install the Microsoft Visual C++ Build Tools (which are free) first. The version depends on which version of Python you have installed:

https://wiki.python.org/moin/WindowsCompilers

For Python 3.6+ simply installing the latest version of MSVC build tools should be sufficient. Note that wheels found via pip do not include MKL support. Wheels available via conda will have MKL, if the MKL backend is used for NumPy.

See requirements.txt for the required version of NumPy.

NumExpr is built in the standard Python way:

python setup.py build install

You can test numexpr with:

python -c "import numexpr; numexpr.test()"

Do not test NumExpr in the source directory or you will generate import errors.

Enable Intel® MKL support

NumExpr includes support for Intel’s MKL library. This may provide better performance on Intel architectures, mainly when evaluating transcendental functions (trigonometrical, exponential, …).

If you have Intel’s MKL, copy the site.cfg.example that comes with the distribution to site.cfg and edit the latter file to provide correct paths to the MKL libraries in your system. After doing this, you can proceed with the usual building instructions listed above.

Pay attention to the messages during the building process in order to know whether MKL has been detected or not. Finally, you can check the speed-ups on your machine by running the bench/vml_timing.py script (you can play with different parameters to the set_vml_accuracy_mode() and set_vml_num_threads() functions in the script so as to see how it would affect performance).

Usage

>>> import numpy as np
>>> import numexpr as ne

>>> a = np.arange(1e6)   # Choose large arrays for better speedups
>>> b = np.arange(1e6)

>>> ne.evaluate("a + 1")   # a simple expression
array([  1.00000000e+00,   2.00000000e+00,   3.00000000e+00, ...,
         9.99998000e+05,   9.99999000e+05,   1.00000000e+06])

>>> ne.evaluate('a*b-4.1*a > 2.5*b')   # a more complex one
array([False, False, False, ...,  True,  True,  True], dtype=bool)

>>> ne.evaluate("sin(a) + arcsinh(a/b)")   # you can also use functions
array([        NaN,  1.72284457,  1.79067101, ...,  1.09567006,
        0.17523598, -0.09597844])

>>> s = np.array([b'abba', b'abbb', b'abbcdef'])
>>> ne.evaluate("b'abba' == s")   # string arrays are supported too
array([ True, False, False], dtype=bool)

Documentation

Please see the official documentation at numexpr.readthedocs.io. Included is a user guide, benchmark results, and the reference API.

Authors

Please see AUTHORS.txt.

License

NumExpr is distributed under the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numexpr-2.9.0.tar.gz (103.2 kB view details)

Uploaded Source

Built Distributions

numexpr-2.9.0-cp312-cp312-win_amd64.whl (96.7 kB view details)

Uploaded CPython 3.12 Windows x86-64

numexpr-2.9.0-cp312-cp312-win32.whl (103.4 kB view details)

Uploaded CPython 3.12 Windows x86

numexpr-2.9.0-cp312-cp312-musllinux_1_1_x86_64.whl (923.1 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

numexpr-2.9.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (380.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

numexpr-2.9.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (381.9 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

numexpr-2.9.0-cp312-cp312-macosx_11_0_arm64.whl (91.9 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

numexpr-2.9.0-cp312-cp312-macosx_10_9_x86_64.whl (102.7 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

numexpr-2.9.0-cp311-cp311-win_amd64.whl (96.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

numexpr-2.9.0-cp311-cp311-win32.whl (103.3 kB view details)

Uploaded CPython 3.11 Windows x86

numexpr-2.9.0-cp311-cp311-musllinux_1_1_x86_64.whl (921.1 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

numexpr-2.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (377.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

numexpr-2.9.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (380.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

numexpr-2.9.0-cp311-cp311-macosx_11_0_arm64.whl (91.8 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

numexpr-2.9.0-cp311-cp311-macosx_10_9_x86_64.whl (102.7 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

numexpr-2.9.0-cp310-cp310-win_amd64.whl (96.6 kB view details)

Uploaded CPython 3.10 Windows x86-64

numexpr-2.9.0-cp310-cp310-win32.whl (103.3 kB view details)

Uploaded CPython 3.10 Windows x86

numexpr-2.9.0-cp310-cp310-musllinux_1_1_x86_64.whl (917.9 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

numexpr-2.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (375.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numexpr-2.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (377.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numexpr-2.9.0-cp310-cp310-macosx_11_0_arm64.whl (91.8 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numexpr-2.9.0-cp310-cp310-macosx_10_9_x86_64.whl (102.7 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

numexpr-2.9.0-cp39-cp39-win_amd64.whl (96.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

numexpr-2.9.0-cp39-cp39-win32.whl (103.2 kB view details)

Uploaded CPython 3.9 Windows x86

numexpr-2.9.0-cp39-cp39-musllinux_1_1_x86_64.whl (916.8 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

numexpr-2.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (374.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

numexpr-2.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (376.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

numexpr-2.9.0-cp39-cp39-macosx_11_0_arm64.whl (91.8 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

numexpr-2.9.0-cp39-cp39-macosx_10_9_x86_64.whl (102.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file numexpr-2.9.0.tar.gz.

File metadata

  • Download URL: numexpr-2.9.0.tar.gz
  • Upload date:
  • Size: 103.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for numexpr-2.9.0.tar.gz
Algorithm Hash digest
SHA256 f21d12f6c432ce349089eb95342babf6629aebb3fddf187a4492d3aadaadaaf0
MD5 762d622ab4334ae2dfed1af6ec61d94e
BLAKE2b-256 fed0b8e7a2865109630775db4ce981f635bface8909eec4ecd8a2b8b16af1b4d

See more details on using hashes here.

File details

Details for the file numexpr-2.9.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.9.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 96.7 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for numexpr-2.9.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 8efd879839572bde5a38a1aa3ac23fd4dd9b956fb969bc5e43d1c403419e1e8c
MD5 3c1ef2a71791e058cdce975b046a7e9d
BLAKE2b-256 d0ff87d5439fef391607dca416af15a07aebcceccf7e3816966507c11b58a2a3

See more details on using hashes here.

File details

Details for the file numexpr-2.9.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: numexpr-2.9.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 103.4 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for numexpr-2.9.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 aa6298fb46bd7ec69911b5b80927a00663d066e719b29f48eb952d559bdd8371
MD5 06f952d70f09d2403ea60a788f7a46c4
BLAKE2b-256 6bc0206db050981faf19f59310936bbc4623ff7a759c52091fccd9137cd668d9

See more details on using hashes here.

File details

Details for the file numexpr-2.9.0-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.9.0-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1a78b937861d13de67d440d54c85a835faed7572be5a6fd10d4f3bd4e66e157f
MD5 37a110c29118b76f85e00b1a5d365355
BLAKE2b-256 2462f9af9d2e3fef51b7cafb6935d301fadecc006e2025a9d4323d6bb42aeaf2

See more details on using hashes here.

File details

Details for the file numexpr-2.9.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.9.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e1c31f621a625c7be602f92b027d90f2d3d60dcbc19b106e77fb04a4362152af
MD5 53c97c0759c0b6c69d317e6c2065671d
BLAKE2b-256 958c3fd18e337fe1f4dba3dea66c5acbd9d320184d45efdc83029557714f50d2

See more details on using hashes here.

File details

Details for the file numexpr-2.9.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.9.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2749bce1c48706d58894992634a43b8458c4ba9411191471c4565fa41e9979ec
MD5 0e198d9a4a704d66fc8f688ac6c3b49f
BLAKE2b-256 2f5d895f727e9cd2dc31054e1fac20aef0c494e0866f39e5cc988e22a92fe97f

See more details on using hashes here.

File details

Details for the file numexpr-2.9.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.9.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0f619e91034b346ea85a4e1856ff06011dcb7dce10a60eda75e74db90120f880
MD5 5596a5ce138729f025ed9303d90f6ea9
BLAKE2b-256 00bde083c767a7b7f8f6870c2a907772ce882c12d08827649c4f7c4ae3d5828a

See more details on using hashes here.

File details

Details for the file numexpr-2.9.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.9.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9761195526a228e05eba400b8c484c94bbabfea853b9ea35ab8fa1bf415331b1
MD5 ea8397a43ba1ba0a69e88119c1049651
BLAKE2b-256 cbb32082c5d8ef80f8bb6a116c4ecc8ea7ee57066b10b45a900869775a911f34

See more details on using hashes here.

File details

Details for the file numexpr-2.9.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.9.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 96.6 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for numexpr-2.9.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 0e2574cafb18373774f351cac45ed23b5b360d9ecd1dbf3c12dac6d6eefefc87
MD5 0fcba40757b400658b17cffd3cbd43d9
BLAKE2b-256 4744d3f2be87ce9d5d823c86123e14b4b56ce48d94df76ebc3c7b3d7dbf32a9c

See more details on using hashes here.

File details

Details for the file numexpr-2.9.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: numexpr-2.9.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 103.3 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for numexpr-2.9.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 00dab81d49239ea5423861ad627097b44d10d802df5f883d1b00f742139c3349
MD5 8c1df3deaf690b080d0c099f4e3abea7
BLAKE2b-256 0715d55a67be46f439101413189f31ffdb728cf2956500ac96f9743e52689142

See more details on using hashes here.

File details

Details for the file numexpr-2.9.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.9.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 37a7dd36fd79a2b69c3fd2bc2b51ac8270bebc69cc96e6d78f1148e147fcbfa8
MD5 d73aa8cd46dbfb175f58da7f08cd4ef9
BLAKE2b-256 4ee1daccddddd9da71a69ed85b176b85d9d59c99a692dd3b0d89438916735c2e

See more details on using hashes here.

File details

Details for the file numexpr-2.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7c618a5895e34db0a364dcdb9960084c080f93f9d377c45b1ca9c394c24b4e77
MD5 20a5123f5c3bb1707cebe828818897b5
BLAKE2b-256 99f01337b186b5213f61302d57813387e877e6d65ac094a3ea2515dbf2c7d485

See more details on using hashes here.

File details

Details for the file numexpr-2.9.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.9.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 549afc1622296cca3478a132c6e0fb5e55a19e08d32bc0d5a415434824a9c157
MD5 2008136de56383dc299703e7a4d92d2d
BLAKE2b-256 6c8b0c104ef40c3e258c6bacfdef717ab61a05c067e6e4a7e118828c0f05437c

See more details on using hashes here.

File details

Details for the file numexpr-2.9.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.9.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 374dc6ca54b2af813cb15c2b34e85092dfeac1f73d51ec358dd81876bd9adcec
MD5 d51c3f0505d459dabbab0393da065a43
BLAKE2b-256 41b58a65a41d2e0e3ac7dc210bc66e440fb720f007b87bcb462d42213ee97abb

See more details on using hashes here.

File details

Details for the file numexpr-2.9.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.9.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bffcbc55dea5a5f5255e2586da08f00929998820e6592ee717273a08ad021eb3
MD5 f07d4d7594310d454fd83a22a8f8192a
BLAKE2b-256 ad2927dcf382ca641468961c61e5804c7c7bae3de21ce1d775f8fd021d96e066

See more details on using hashes here.

File details

Details for the file numexpr-2.9.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.9.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 96.6 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for numexpr-2.9.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5615497c3f34b637fda9b571f7774b6a82f2367cc1364b7a4573068dd1aabcaa
MD5 4745f8041a1d6cb9a6018d88e0c09fff
BLAKE2b-256 60347dec750949ad29ac86efe16bf47ce3856c3fcd95478f8a58946cba097a77

See more details on using hashes here.

File details

Details for the file numexpr-2.9.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: numexpr-2.9.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 103.3 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for numexpr-2.9.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 520e55d75bd99c76e376b6326e35ecf44c5ce2635a5caed72799a3885fc49173
MD5 d95eb8c499cf41fe07b32d85cdddd790
BLAKE2b-256 f3b6be50c481135bab3d94f999961afeb5895c8b9c4a468efccb20e12bc1ea1e

See more details on using hashes here.

File details

Details for the file numexpr-2.9.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.9.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 972e29b5cecc21466c5b177e38568372ab66aab1f053ae04690a49cea09e747d
MD5 7d8cc48a5f2e788c13d2147572aa796b
BLAKE2b-256 1e7fc56e74af2bc225ff55478a57d31372976e0835f3d8837333dd5f233421a7

See more details on using hashes here.

File details

Details for the file numexpr-2.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ee48acd6339748a65c0e32403b802ebfadd9cb0e3b602ba5889896238eafdd61
MD5 b7794da05aedf1324ff558b7fb237a95
BLAKE2b-256 4a39cc88cdade7fb8e409efb63b79c22cfbea7c9c15249e375dfbaf86984dece

See more details on using hashes here.

File details

Details for the file numexpr-2.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 943ba141f3884ffafa3fa1a3ebf3cdda9e9688a67a3c91986e6eae13dc073d43
MD5 b0835c5a0ef27154463b33b56e58be65
BLAKE2b-256 327599d92b735b1a968d07ba5b3652168f7508551d8892b55484969c7665f16b

See more details on using hashes here.

File details

Details for the file numexpr-2.9.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.9.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 50f57bc333f285e8c46b1ce61c6e94ec9bb74e4ea0d674d1c6c6f4a286f64fe4
MD5 9758cf8e53a71cd531d72f20b5bebcb0
BLAKE2b-256 68207f49b96ba89f44606f5d04b42c5e25af74d0235c44a03c3be30644f24228

See more details on using hashes here.

File details

Details for the file numexpr-2.9.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.9.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c52b4ac54514f5d4d8ead66768810cd5f77aa198e6064213d9b5c7b2e1c97c35
MD5 d072988e7972b3055ee27112fc03ceef
BLAKE2b-256 e52afc78e31661db6e224b34d50afd9ff1ff882a773d8f22be79cd63e4198afc

See more details on using hashes here.

File details

Details for the file numexpr-2.9.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.9.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 96.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for numexpr-2.9.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d655b6eacc4e81006b662cba014e4615a9ddd96881b8b4db4ad0d7f6d38069af
MD5 edabfde9e987be1e68b3ac1b746e540d
BLAKE2b-256 d2fd95d75600f3d32b97613f64efe5c5f9ad041c19e27417deb011c0d458795a

See more details on using hashes here.

File details

Details for the file numexpr-2.9.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: numexpr-2.9.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 103.2 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for numexpr-2.9.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 3b03a6cf37a72f5b52f2b962d7ac7f565bea8eaba83c3c4e5fcf8fbb6a938153
MD5 66982e38f5beca9a08419af076af0abd
BLAKE2b-256 882e3378ea4fa6acd64e8b5f25d83ff3a4062e9e86b63930ff76c9fe2e386673

See more details on using hashes here.

File details

Details for the file numexpr-2.9.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.9.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7c77392aea53f0700d60eb270ad63174b4ff10b04f8de92861101ca2129fee51
MD5 5efb056c95e90947f80b5b87ea3bbca7
BLAKE2b-256 0122e0fc2608d9c6a1e949ff4e2cbaf3713c094bd74d6732fbaa4f1c08600e8f

See more details on using hashes here.

File details

Details for the file numexpr-2.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1fae6828042b70c2f52a132bfcb9139da704274ed11b982fbf537f91c075d2ef
MD5 1312efe613ee90e6d8a47cda18fb8ccb
BLAKE2b-256 bc4517dd2c73dc921fd0ede872c9ff5fad02e2f3d2c1d2b2a24a6a6836f939cd

See more details on using hashes here.

File details

Details for the file numexpr-2.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6eae6c0c2d5682c02e8ac9c4287c2232c2443c9148b239df22500eaa3c5d73b7
MD5 b206af4bcc635aa2212596eb1e803e4a
BLAKE2b-256 5c3da2870b9f1df3059671de6dfb06afd8ff7c582ab96a23aa88bd962fb08867

See more details on using hashes here.

File details

Details for the file numexpr-2.9.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.9.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 977537f2a1cc843f888fb5f0507626f956ada674e4b3847168214a3f3c7446fa
MD5 6c4e8d219652107ac205962bd52e5570
BLAKE2b-256 67763bcafcb8ef7ca13901e199cf72e560211623e95145e29e432513517e42b4

See more details on using hashes here.

File details

Details for the file numexpr-2.9.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.9.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b04f12a6130094a251e3a8fff40130589c1c83be6d4eb223873bea14d8c8b630
MD5 8dccf88b9bd1ac92d28db072342e1ee3
BLAKE2b-256 006b5a4b08ab2ef097185d2ac6c9e524db6692c97e50074dac37d61a64ac7c75

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page