Skip to main content

NumPy: array processing for numbers, strings, records, and objects.

Project description

NumPy is a general-purpose array-processing package designed to efficiently manipulate large multi-dimensional arrays of arbitrary records without sacrificing too much speed for small multi-dimensional arrays. NumPy is built on the Numeric code base and adds features introduced by numarray as well as an extended C-API and the ability to create arrays of arbitrary type which also makes NumPy suitable for interfacing with general-purpose data-base applications.

There are also basic facilities for discrete fourier transform, basic linear algebra and random number generation.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

numpy-1.10.1.zip (4.6 MB view details)

Uploaded Source

numpy-1.10.1.tar.gz (4.0 MB view details)

Uploaded Source

Built Distributions

numpy-1.10.1-cp35-cp35m-manylinux1_x86_64.whl (15.3 MB view details)

Uploaded CPython 3.5m

numpy-1.10.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.10.1-cp34-cp34m-manylinux1_x86_64.whl (15.3 MB view details)

Uploaded CPython 3.4m

numpy-1.10.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.10.1-cp33-cp33m-manylinux1_x86_64.whl (15.1 MB view details)

Uploaded CPython 3.3m

numpy-1.10.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.3m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.10.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (3.7 MB view details)

Uploaded CPython 2.7 macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.10.1-cp27-cp27mu-manylinux1_x86_64.whl (15.0 MB view details)

Uploaded CPython 2.7mu

numpy-1.10.1-cp27-cp27m-manylinux1_x86_64.whl (15.0 MB view details)

Uploaded CPython 2.7m

numpy-1.10.1-cp26-cp26mu-manylinux1_x86_64.whl (15.0 MB view details)

Uploaded CPython 2.6mu

numpy-1.10.1-cp26-cp26m-manylinux1_x86_64.whl (15.0 MB view details)

Uploaded CPython 2.6m

File details

Details for the file numpy-1.10.1.zip.

File metadata

  • Download URL: numpy-1.10.1.zip
  • Upload date:
  • Size: 4.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numpy-1.10.1.zip
Algorithm Hash digest
SHA256 32843c5629d9b95c8a5f908fb4dc3b658b8478f7d1f007739194b62500600200
MD5 6f57c58bc5b28440fbeccd505da63d58
BLAKE2b-256 a52e5412784108f5dc0f827fb460ccdeaa9d76286979fe5ddd070d526d168a59

See more details on using hashes here.

File details

Details for the file numpy-1.10.1.tar.gz.

File metadata

  • Download URL: numpy-1.10.1.tar.gz
  • Upload date:
  • Size: 4.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numpy-1.10.1.tar.gz
Algorithm Hash digest
SHA256 8b9f453f29ce96a14e625100d3dcf8926301d36c5f622623bf8820e748510858
MD5 3fed2b50906bc19018cec5fa26168aa5
BLAKE2b-256 b6a7902ef93be4d589fa8e66ed2d1e5eaad8e20f5af6321807ba695fc562f2dd

See more details on using hashes here.

File details

Details for the file numpy-1.10.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.10.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 caecae08c83fbc5f2f560849be19b2119c7a47cbc006113298a60f8fc9dd566c
MD5 9b0c4869da6a7cbf740376a71b6b8a83
BLAKE2b-256 f9882056a8b64b2ff5f3885ea72c35f6fa2ef3cf726076d34cfc920e396e17e1

See more details on using hashes here.

File details

Details for the file numpy-1.10.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.10.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 3811870c9658e3828e0a090e46a84a3fee38cf55eb13a763f9d16a501e897b95
MD5 e7c34db1d8c7a1249337c28363e03954
BLAKE2b-256 bc2a9594462ffec8b4a815ae796342e3fac38342ab0506dfbba8ba458b18526f

See more details on using hashes here.

File details

Details for the file numpy-1.10.1-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.10.1-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d26511e51de9d178d6ba99a00602a0bae38bc17a1a0ff98deed2badecc8b4350
MD5 187afd9ac676d98a74129ffb4ed1bfd2
BLAKE2b-256 76a65728cb626e44cdd6ef00bed1f5725b45e2b2da5f6b4253657e2edff519c2

See more details on using hashes here.

File details

Details for the file numpy-1.10.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.10.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 9cf5c8a98a0fb6547a68d35d93c0525259331fd12cd50f6d5025cf41ba4b61d2
MD5 58e90f608f8dbdcc20c55b9d10e02ebf
BLAKE2b-256 304cd3a75e4b11705770ac0b455f535b971fa35814b0b43cb49291f41517d5a1

See more details on using hashes here.

File details

Details for the file numpy-1.10.1-cp33-cp33m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.10.1-cp33-cp33m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 85cbfd4f7c75fdd0d1ca2748d91c6e90b0eb0a91e83858ac692c1c711912951e
MD5 fc5205ffad0778d8b04feb04c2d74a06
BLAKE2b-256 10d397d4819e71ab750c74bf022d16d800267b5f90650ec330ff478d90a6f08a

See more details on using hashes here.

File details

Details for the file numpy-1.10.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.10.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 1a5ea8be1676750bbbf289b7645f0538239ffd707475eab408805285401c5e1f
MD5 0d6d8018af0e718e68d64e493988ac00
BLAKE2b-256 ab023608765d4e9bd9408ca3d9df155de22efa98b9daccf180ddac023a36f51c

See more details on using hashes here.

File details

Details for the file numpy-1.10.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.10.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 b3d5d4ac56d34b9c592fc14f3d180ebcd2e883739a728b046d4f1182c6fd14b0
MD5 b582a9de1e411a20555c04b852d1f6d1
BLAKE2b-256 54d663d1ab416e98e5258633258ab24cba6f64ea39ed22151486e31bdedd29b8

See more details on using hashes here.

File details

Details for the file numpy-1.10.1-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.10.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 06ca8b9b3fc9b2bd91ba952dc0cf0f19982b3fbb32b4d0b0cabf6319dafa9661
MD5 8d927817d9528fc9a6b5da7afd0c18a1
BLAKE2b-256 430929ee295f8794ac4ffe73743ed3346aec822c53afd29188fce179c370a532

See more details on using hashes here.

File details

Details for the file numpy-1.10.1-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.10.1-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 59c3d301b379238842c346bfa94d1faf278ade8b97aa2a13cad2587fa55810d6
MD5 828166706d9dea4418e8cf7e11b664b5
BLAKE2b-256 6ca5b399533b957ee84cd062d8b5389da50fd33102931661baa75253cea4b4c4

See more details on using hashes here.

File details

Details for the file numpy-1.10.1-cp26-cp26mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.10.1-cp26-cp26mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1577450c8fb2d89c3ae45a04a337cf410a2d8acbd6790838146df3da87ccd0a4
MD5 fb2447c7280f11183bb380834bc8081a
BLAKE2b-256 175c6a3ab713d89c526e35317d4cba9c775aa17405e695f355af08987c2a9647

See more details on using hashes here.

File details

Details for the file numpy-1.10.1-cp26-cp26m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.10.1-cp26-cp26m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 874a9bb52d85947dfabbb29265db9a943fdd1410554ec4d86533ef12ce2a616d
MD5 a6162716bed670af8b4d91ded463397c
BLAKE2b-256 487ca0d39b6f24247e02a4f9e9f0f651c80e62417b24e8e2bfa9c8e52bf05f6c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page