Skip to main content

NumPy: array processing for numbers, strings, records, and objects.

Project description

NumPy is a general-purpose array-processing package designed to efficiently manipulate large multi-dimensional arrays of arbitrary records without sacrificing too much speed for small multi-dimensional arrays. NumPy is built on the Numeric code base and adds features introduced by numarray as well as an extended C-API and the ability to create arrays of arbitrary type which also makes NumPy suitable for interfacing with general-purpose data-base applications.

There are also basic facilities for discrete fourier transform, basic linear algebra and random number generation.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

numpy-1.10.2.zip (4.6 MB view details)

Uploaded Source

numpy-1.10.2.tar.gz (4.1 MB view details)

Uploaded Source

Built Distributions

numpy-1.10.2-cp35-cp35m-manylinux1_x86_64.whl (15.3 MB view details)

Uploaded CPython 3.5m

numpy-1.10.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.10.2-cp34-cp34m-manylinux1_x86_64.whl (15.3 MB view details)

Uploaded CPython 3.4m

numpy-1.10.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.10.2-cp33-cp33m-manylinux1_x86_64.whl (15.1 MB view details)

Uploaded CPython 3.3m

numpy-1.10.2-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.3m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.10.2-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (3.7 MB view details)

Uploaded CPython 2.7 macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.10.2-cp27-cp27mu-manylinux1_x86_64.whl (15.0 MB view details)

Uploaded CPython 2.7mu

numpy-1.10.2-cp27-cp27m-manylinux1_x86_64.whl (15.0 MB view details)

Uploaded CPython 2.7m

numpy-1.10.2-cp26-cp26mu-manylinux1_x86_64.whl (15.0 MB view details)

Uploaded CPython 2.6mu

numpy-1.10.2-cp26-cp26m-manylinux1_x86_64.whl (15.0 MB view details)

Uploaded CPython 2.6m

File details

Details for the file numpy-1.10.2.zip.

File metadata

  • Download URL: numpy-1.10.2.zip
  • Upload date:
  • Size: 4.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numpy-1.10.2.zip
Algorithm Hash digest
SHA256 1e36646c1d01b1ab1a4cff1793c43667c0c14483bc07b0c6c4971de667bce334
MD5 ff3e26073bc59aae80caf722150edac6
BLAKE2b-256 5b37fa5f2251aec44d4816f24f6dcca38a212efd725150f335cedae3ad0e65bd

See more details on using hashes here.

File details

Details for the file numpy-1.10.2.tar.gz.

File metadata

  • Download URL: numpy-1.10.2.tar.gz
  • Upload date:
  • Size: 4.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numpy-1.10.2.tar.gz
Algorithm Hash digest
SHA256 23a3befdf955db4d616f8bb77b324680a80a323e0c42a7e8d7388ef578d8ffa9
MD5 816518282f1617636aaf26e7cd9b127b
BLAKE2b-256 3d82a8e9227167dca4301d4d7a61977a50d12cd98c277eb9035d7b78bc8b4a1f

See more details on using hashes here.

File details

Details for the file numpy-1.10.2-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.10.2-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 de5010e9ad7b49197f6b724d5564fa35078df808107beddc44727acde2ecd06f
MD5 e34db15c7b663ea71c8931dfa18c3af2
BLAKE2b-256 c250f788eea6bfcdf611572c419c91d7e9d6ea86ff8abe08e6f74b83789b0624

See more details on using hashes here.

File details

Details for the file numpy-1.10.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.10.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 a0beb7e95644b731928cb100e4d74fe9f63a949e1272c938bae7e03923026ac7
MD5 df3b4a3ddecd22a8fa45f55d3574338b
BLAKE2b-256 4350a6a76d6925c4e00825f2bcdca817098cad689d4942d88fa41585adb9f2c8

See more details on using hashes here.

File details

Details for the file numpy-1.10.2-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.10.2-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4214875aef06c5fdaa711d167a9ba55e350023b87f408ff7825da6aee8eb946d
MD5 a431aaaa226afe4ec5bfebefac89e9ba
BLAKE2b-256 47bb29de26afd90d8e1c6be18d5cc975bb21655b0f3a35e86d5591e4c92776f0

See more details on using hashes here.

File details

Details for the file numpy-1.10.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.10.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 77c100eb84a5c276f44c4f04607a79e6c9e588406d15391c28139fa50b9cb929
MD5 6c48c46a5952da5267b89f1e91f98fa8
BLAKE2b-256 ff3f9ab82080f6caaa9aec6f2c770aab7b8a696456d32b859c28a42532170bc5

See more details on using hashes here.

File details

Details for the file numpy-1.10.2-cp33-cp33m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.10.2-cp33-cp33m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 370197a237cd81c767e5907c2fcbc724d2adeacebd6520400a0990330f924c75
MD5 9da694e19641ab9abb2ec86c2e16bacf
BLAKE2b-256 d96efa534ce6216ab911068fff3cd77e35b61680aefc6262e3a841eaf754fece

See more details on using hashes here.

File details

Details for the file numpy-1.10.2-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.10.2-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 eb84df0e6df1e49b64c632c1e003b2eb2ffa72407fe46e14017fa207f35eaadb
MD5 6d13e00bd34fb12603d5062c36268ad2
BLAKE2b-256 557a74f6b62e4b1437f8194d6f9d048808f422a21063410dced1d3641bc2b4ed

See more details on using hashes here.

File details

Details for the file numpy-1.10.2-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.10.2-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 d4d6d0732e059ca7d96f8cb9a018804aecd10ef9ecd3889969e237a0dd42bc31
MD5 614683c6aab271d8bc9054f6ea5a6388
BLAKE2b-256 525f5aa499f7c860ff2cd4aed1ba7a82873c50367ba69f4e82fe06bfe7189771

See more details on using hashes here.

File details

Details for the file numpy-1.10.2-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.10.2-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d2165d29d3176d3f20c69f581019f772d3102968876d468952657c1ba589a355
MD5 3a7a119aac6ae71fb94ebbfa79fae789
BLAKE2b-256 90b1f0656115d4a694e441caec29cc671364a4b923d6a3dbcef15b8bf7e51e54

See more details on using hashes here.

File details

Details for the file numpy-1.10.2-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.10.2-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b177a6457b3914a955c7c45239e674bd71ce62bd9d3eeaf7cffdc7b071906a49
MD5 8ff7cf5964cabbac7bbfa733787fb173
BLAKE2b-256 5a4f70950d016a4f3c7abf63dd53cd872f564129de4e0093d745125f5046043b

See more details on using hashes here.

File details

Details for the file numpy-1.10.2-cp26-cp26mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.10.2-cp26-cp26mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1a9873eab24dddc508c0c0ecc06d89d6129969b2929ffcd2a7473664c3ee051d
MD5 e8365ea683652f40e71a1d3352136ebe
BLAKE2b-256 af65c20f56f3deb78500f2dfcb6f64baa756e9ecafe2c241ece85906fcc4ce21

See more details on using hashes here.

File details

Details for the file numpy-1.10.2-cp26-cp26m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.10.2-cp26-cp26m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f3e72f871bbb7a437a0ed1a0af1861a63dc983059856348c5b3cfa52198a636f
MD5 5cfbebfe785b2db404459d7869b882be
BLAKE2b-256 9f3ac1b4d1c2e9bbfa50197e50f348af3fd1b5b12df68f16b31e0949ce4e300b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page