Skip to main content

NumPy: array processing for numbers, strings, records, and objects.

Project description

NumPy is a general-purpose array-processing package designed to efficiently manipulate large multi-dimensional arrays of arbitrary records without sacrificing too much speed for small multi-dimensional arrays. NumPy is built on the Numeric code base and adds features introduced by numarray as well as an extended C-API and the ability to create arrays of arbitrary type which also makes NumPy suitable for interfacing with general-purpose data-base applications.

There are also basic facilities for discrete fourier transform, basic linear algebra and random number generation.

All numpy wheels distributed from pypi are BSD licensed.

Windows wheels are linked against the ATLAS BLAS / LAPACK library, restricted to SSE2 instructions, so may not give optimal linear algebra performance for your machine. See http://docs.scipy.org/doc/numpy/user/install.html for alternatives.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

numpy-1.10.4.zip (4.6 MB view details)

Uploaded Source

numpy-1.10.4.tar.gz (4.1 MB view details)

Uploaded Source

Built Distributions

numpy-1.10.4-cp35-none-win_amd64.whl (7.5 MB view details)

Uploaded CPython 3.5 Windows x86-64

numpy-1.10.4-cp35-none-win32.whl (6.6 MB view details)

Uploaded CPython 3.5 Windows x86

numpy-1.10.4-cp35-cp35m-manylinux1_x86_64.whl (15.3 MB view details)

Uploaded CPython 3.5m

numpy-1.10.4-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.10.4-cp34-none-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.4 Windows x86-64

numpy-1.10.4-cp34-none-win32.whl (6.4 MB view details)

Uploaded CPython 3.4 Windows x86

numpy-1.10.4-cp34-cp34m-manylinux1_x86_64.whl (15.3 MB view details)

Uploaded CPython 3.4m

numpy-1.10.4-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.10.4-cp33-cp33m-manylinux1_x86_64.whl (15.1 MB view details)

Uploaded CPython 3.3m

numpy-1.10.4-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.3m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.10.4-cp27-none-win_amd64.whl (7.3 MB view details)

Uploaded CPython 2.7 Windows x86-64

numpy-1.10.4-cp27-none-win32.whl (6.4 MB view details)

Uploaded CPython 2.7 Windows x86

numpy-1.10.4-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (3.7 MB view details)

Uploaded CPython 2.7 macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.10.4-cp27-cp27mu-manylinux1_x86_64.whl (15.0 MB view details)

Uploaded CPython 2.7mu

numpy-1.10.4-cp27-cp27m-manylinux1_x86_64.whl (15.0 MB view details)

Uploaded CPython 2.7m

numpy-1.10.4-cp26-cp26mu-manylinux1_x86_64.whl (15.0 MB view details)

Uploaded CPython 2.6mu

numpy-1.10.4-cp26-cp26m-manylinux1_x86_64.whl (15.0 MB view details)

Uploaded CPython 2.6m

File details

Details for the file numpy-1.10.4.zip.

File metadata

  • Download URL: numpy-1.10.4.zip
  • Upload date:
  • Size: 4.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numpy-1.10.4.zip
Algorithm Hash digest
SHA256 8ce443dc79656a9fc97a7837f1444d324aef2c9b53f31f83441f57ad1f1f3659
MD5 510ffc322c635511e7be95d225b6bcbb
BLAKE2b-256 182c83ad456993e1629792d480c147b17c428e09672aa00efb77ee0419f26d83

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.10.4.tar.gz.

File metadata

  • Download URL: numpy-1.10.4.tar.gz
  • Upload date:
  • Size: 4.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numpy-1.10.4.tar.gz
Algorithm Hash digest
SHA256 7356e98fbcc529e8d540666f5a919912752e569150e9a4f8d869c686f14c720b
MD5 aed294de0aa1ac7bd3f9745f4f1968ad
BLAKE2b-256 1d943ad9a865f1b0853f952eaa9878c59371ac907b768fe789547f573a6c9b39

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.10.4-cp35-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.10.4-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 2e5061e59fe46f1773f9ab022566629e3dd7880ade7c195c85c71fe5fdfedcab
MD5 2f3401c7b4ef41209fad698994f8bac6
BLAKE2b-256 dd7ef9ba4593d26c8814022bc0658668abdc1950e390ad5195783774808e4cd6

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.10.4-cp35-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.10.4-cp35-none-win32.whl
Algorithm Hash digest
SHA256 cdc80cca8ec5383083aa8aafe00dcb314a20fbe54f3f617bcb5abb5d5b869371
MD5 fb9637bf19b5bb20f130e63548a5a4a2
BLAKE2b-256 02977a95b7bf1f6a7d23f49ff9fd49e029495d87897d6c9fab721069bddc8cf5

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.10.4-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.10.4-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 60544789979589a0f6110a5688301b11f375a558fe7d8b4c09b47064a8e05939
MD5 3ac1a6ab5f4008b19f592ef08004e905
BLAKE2b-256 4eb8f8ee3809eb08f57382a3c24ee63e8e2394466d777fe7e54717c4416fe3a2

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.10.4-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.10.4-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 93a16d948071da5599f9e0a8d11544b1c0ab370bf61f06aa65d350fecda57252
MD5 a53719cfe1c49d7fda6649b66e5a400c
BLAKE2b-256 8fa83c119af735abb6915db646559bfbd09d66cdff911fa5d74b85523b12ca0a

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.10.4-cp34-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.10.4-cp34-none-win_amd64.whl
Algorithm Hash digest
SHA256 e7bf4db7beb70a6320fc02d80452fdddfe4d2b3050b3afbda34d0087a4d2dc07
MD5 f5835d8410f0d3bb7fb22f86e7d3c14f
BLAKE2b-256 d9265525b4e94ef78b7fccc92d0978362ced0b50de9e07bd0f32082f914ce29f

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.10.4-cp34-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.10.4-cp34-none-win32.whl
Algorithm Hash digest
SHA256 033628b9021affb637cf28bfb4f432aca47577a56cb515155693af99870b5079
MD5 3e813f66df76fad149b30ebc74a5445b
BLAKE2b-256 ba3db5f1f6b2960fd9d6a4540e2a4d18bfd0f75cc5f4e9ddde3a500193e3af93

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.10.4-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.10.4-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9cf62f2f3c44bcdc8279f47fb71090345e1b676c360d8682b721ddfc2c7dbe80
MD5 a2df70ae525afd1f2474d40e6b3716a2
BLAKE2b-256 0f6066709cbc72ca47a72f35fb55111318254da8f2a5252cf61b53a320cb73c9

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.10.4-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.10.4-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 ea531a2552d528e5835aa915d89ed457b031a4845ca60ebda6464e6f1ab7b631
MD5 fb9f7f2d20033b752e12bcf343a97895
BLAKE2b-256 885d77f7fed3d570a0e0e7de616a6f8452205b961db416b74e385f9e4c38f1aa

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.10.4-cp33-cp33m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.10.4-cp33-cp33m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 34e5f4a13c308dc67e60eb3c27a5e79c2599e62eaa9b30b7fa4833c9048a3ec2
MD5 7906be5cd04849532a1245c4caa0183a
BLAKE2b-256 5b49f3f3212c952467eec3b3299618c5ece48e7c67827bd7f236b41c4e50c9e1

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.10.4-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.10.4-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 8b3e232e317fd089323148530a914d2d434b8f984336c83bb5abcb863e2b8dbc
MD5 f01bbb06077996480c9681f7877c4bc5
BLAKE2b-256 f17e18f184c64a635ec9780b020cc3d6d71725fbb2195cb7aa14c52530df6e0d

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.10.4-cp27-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.10.4-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 23f6d226e22048306487d00e3121662a60e746a0b50afecc9b09c1067bdb46d2
MD5 5fa6ae8088edd0b951ad245fed394368
BLAKE2b-256 9a07b81a0b6a7164474d4c8708d5f491fa4ad7cfa748fe290df8d9eb3ff4d895

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.10.4-cp27-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.10.4-cp27-none-win32.whl
Algorithm Hash digest
SHA256 e08815c1053be2488c97ac1976e3d79aba6e76974e871182700c76650013d54c
MD5 ded40242a471a4cc8921b36a04fe89a7
BLAKE2b-256 c65109b37f507c9b49d0cfc0f4ee43cc019c78e813dd9c2fd92980baa858250b

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.10.4-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.10.4-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 d7a5fcb7bcacd6fbd3a1b685254d6e2c9b555ebe6f3022268a39e214b9d46cea
MD5 06373a8be2408149b143c3ea4c0bcc1d
BLAKE2b-256 f55d13646daed60bcad901a2f02e106079e416a9c952c016b5dc3909599e9def

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.10.4-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.10.4-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 716ea99fa0fcc52aa76eb513a388c3c065731a99a697267b7791f011d9ef2f89
MD5 40771e35a1888c4b03664710adb674ac
BLAKE2b-256 4b06c7df438b7b89e16161e4cc2183b5d7f36d0e5ceb46aa0adc4df12a8e8268

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.10.4-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.10.4-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ecbff745fc0b0899005d34a2509b8aaf01d25ce1b0e7a2e959bbcb5be0aaef34
MD5 2847173154557484b0752145863ea5fa
BLAKE2b-256 a863f6ffb261c30cd4b9ba93c9f54f4e2f33ce29e59991d935d5c541cf0e8d9e

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.10.4-cp26-cp26mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.10.4-cp26-cp26mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a493afbc8ff68438ce0d91e33c70d0682ba7f4e88061ec0247fe9757b599313c
MD5 905e74f9428a6c22903fa7aee3248912
BLAKE2b-256 a9d72f4d536eaf4157518d7531b0358d20b86103464c5f35009780e8043043da

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.10.4-cp26-cp26m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.10.4-cp26-cp26m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 319c67543f081324ca0c61664caa1dfeed00cbcfe1195583f95690c56636f9d4
MD5 f4a81924ddcc1952475bff1144452ab7
BLAKE2b-256 df85aa2c3e6249064a41b3893e1ab2f61016845294a66d5dbaa1f748aa594fe3

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page