Skip to main content

NumPy: array processing for numbers, strings, records, and objects.

Project description

NumPy is a general-purpose array-processing package designed to efficiently manipulate large multi-dimensional arrays of arbitrary records without sacrificing too much speed for small multi-dimensional arrays. NumPy is built on the Numeric code base and adds features introduced by numarray as well as an extended C-API and the ability to create arrays of arbitrary type which also makes NumPy suitable for interfacing with general-purpose data-base applications.

There are also basic facilities for discrete fourier transform, basic linear algebra and random number generation.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.11.3.zip (4.7 MB view details)

Uploaded Source

Built Distributions

numpy-1.11.3-cp36-cp36m-manylinux1_x86_64.whl (15.7 MB view details)

Uploaded CPython 3.6m

numpy-1.11.3-cp36-cp36m-manylinux1_i686.whl (11.8 MB view details)

Uploaded CPython 3.6m

numpy-1.11.3-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.11.3-cp35-none-win_amd64.whl (7.6 MB view details)

Uploaded CPython 3.5 Windows x86-64

numpy-1.11.3-cp35-none-win32.whl (6.6 MB view details)

Uploaded CPython 3.5 Windows x86

numpy-1.11.3-cp35-cp35m-manylinux1_x86_64.whl (15.6 MB view details)

Uploaded CPython 3.5m

numpy-1.11.3-cp35-cp35m-manylinux1_i686.whl (11.8 MB view details)

Uploaded CPython 3.5m

numpy-1.11.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.11.3-cp34-none-win_amd64.whl (7.4 MB view details)

Uploaded CPython 3.4 Windows x86-64

numpy-1.11.3-cp34-none-win32.whl (6.5 MB view details)

Uploaded CPython 3.4 Windows x86

numpy-1.11.3-cp34-cp34m-manylinux1_x86_64.whl (15.7 MB view details)

Uploaded CPython 3.4m

numpy-1.11.3-cp34-cp34m-manylinux1_i686.whl (11.8 MB view details)

Uploaded CPython 3.4m

numpy-1.11.3-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.11.3-cp27-none-win_amd64.whl (7.4 MB view details)

Uploaded CPython 2.7 Windows x86-64

numpy-1.11.3-cp27-none-win32.whl (6.5 MB view details)

Uploaded CPython 2.7 Windows x86

numpy-1.11.3-cp27-cp27mu-manylinux1_x86_64.whl (15.4 MB view details)

Uploaded CPython 2.7mu

numpy-1.11.3-cp27-cp27mu-manylinux1_i686.whl (11.5 MB view details)

Uploaded CPython 2.7mu

numpy-1.11.3-cp27-cp27m-manylinux1_x86_64.whl (15.4 MB view details)

Uploaded CPython 2.7m

numpy-1.11.3-cp27-cp27m-manylinux1_i686.whl (11.5 MB view details)

Uploaded CPython 2.7m

numpy-1.11.3-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.2 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file numpy-1.11.3.zip.

File metadata

  • Download URL: numpy-1.11.3.zip
  • Upload date:
  • Size: 4.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numpy-1.11.3.zip
Algorithm Hash digest
SHA256 2e0fc5248246a64628656fe14fcab0a959741a2820e003bd15538226501b82f7
MD5 aa70cd5bba81b78382694d654ed10036
BLAKE2b-256 e176ff83c98f68bdc6917cebde954f7fc23e2ba30043590d5c3e0f5cd9033482

See more details on using hashes here.

File details

Details for the file numpy-1.11.3-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.11.3-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 3907299380cd824d9feef9780340c0bc1ba2af1217fc927a931e5f193b8c2dea
MD5 978b423649bca38493ad1a4d39ad0d5b
BLAKE2b-256 a6cfa4b4398cabe57968d44d4091ed6644f69704f4783c90c05fa480a8fb0b11

See more details on using hashes here.

File details

Details for the file numpy-1.11.3-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.11.3-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 2137ec3cb1a2dba2658253d111d267d2ae0e6a545cd6560ad60317a56e54ae12
MD5 f0d7a495ccd7089c5c0e4fdb02fcf12f
BLAKE2b-256 b784fc9d12e49f7eca73c8cfda7a58adee47d5329c6615205b4605e6bb95c465

See more details on using hashes here.

File details

Details for the file numpy-1.11.3-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.11.3-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 dbde406bdbde500ed42420e18b150da2c5cef962bb217be3152f93ec9af66152
MD5 08cee9a047c3f7bb2b0be7879ea5cf47
BLAKE2b-256 d8cab2a90eb5884e469814d9cb3b18c48823b19324c2757005c9532de302d69b

See more details on using hashes here.

File details

Details for the file numpy-1.11.3-cp35-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.11.3-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 dd1800ec19192fd853bc255917eb3ecb34de268551b9c561f36d089023883807
MD5 b1a53851dde805a233e6c4eafe116e82
BLAKE2b-256 6836f3f32c9ac0d307f903ce6a5779c1ad9861725bcb102e17a603e037796cb0

See more details on using hashes here.

File details

Details for the file numpy-1.11.3-cp35-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.11.3-cp35-none-win32.whl
Algorithm Hash digest
SHA256 ab2af03dabecb97de27badfa944c56d799774a1fa975d52083197bb81858b742
MD5 f8b64f46cc0e9a3fc877f24efd5e3b7c
BLAKE2b-256 2849c6c6a85e0a10d5ddc9db7e961c213b821d15a3f5c9f726f4354845d790fc

See more details on using hashes here.

File details

Details for the file numpy-1.11.3-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.11.3-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7c6eb737dc3d53977c558d57625dfbecd9900a5807ff17edd6842a102cb95c3b
MD5 3d6754274af48c1c19154dd370ddb569
BLAKE2b-256 673c9b40b67e9ce241d8ef5069f65c49e142da6dc073053802347ef256e5950c

See more details on using hashes here.

File details

Details for the file numpy-1.11.3-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.11.3-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 ab810c942ead3f5988a7bef95dc6e85b586b6e814b83d571dfbca879e245bd45
MD5 3b2268154e405f895402cbd4cbcaad7a
BLAKE2b-256 d72fd443ff5e66553ce283facb1a8ca05c11d3aa77db2e00a45eae6693f98ee3

See more details on using hashes here.

File details

Details for the file numpy-1.11.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.11.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 cca8af884cbf220656ca2f8f9120a634e5cfb5fdcb0a21fd83ec279cc4f46654
MD5 f90839ad86e3ccda9a409ce93ca1cccc
BLAKE2b-256 dd6c113af9a725eb0f4f351a2d72b5f2d13db632045a7bf9b2e26b379dbe911a

See more details on using hashes here.

File details

Details for the file numpy-1.11.3-cp34-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.11.3-cp34-none-win_amd64.whl
Algorithm Hash digest
SHA256 135586ce1966dbecd9494ba30cb9beca93fad323ef9264c21efc2a0b59e449d2
MD5 2f3fdd08d9ad43304d67c16182ff92de
BLAKE2b-256 74f2efbcdeb948910ef6ec7cffbdf1e64ced7aa93070e844fe78488a53b2e614

See more details on using hashes here.

File details

Details for the file numpy-1.11.3-cp34-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.11.3-cp34-none-win32.whl
Algorithm Hash digest
SHA256 71a6aa8b8c9f666b541208d38b30c84df1666e4cc02fb33b59086aaea10affad
MD5 f6b24305ab3edba245106b49b97fd9d7
BLAKE2b-256 b595f2e61d653ba1c29863efd75b4bd92a005b37d6b76158fbd51d9df647d7f8

See more details on using hashes here.

File details

Details for the file numpy-1.11.3-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.11.3-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 195604fc19a9333f3342fcad93094b6a21bc6e6b28d7bfec14d120cb4391a032
MD5 837d9d7c911d4589172d19d0d8fb4eaf
BLAKE2b-256 a650b9f6f8ef180ed9a5c5330cb81e0c47aedc3ea6fe01a39dc01b731d82b64a

See more details on using hashes here.

File details

Details for the file numpy-1.11.3-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.11.3-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 9e4228ac322743dea101a90305ee6d54b4bf82f15d6499e55d1d9cef17bccdbb
MD5 194d8903cb3fd3b17af4093089b1a154
BLAKE2b-256 06b39415683c2ad2c187d3dc89ba45ceaaf947702c4db550fb8d2596b556d2c9

See more details on using hashes here.

File details

Details for the file numpy-1.11.3-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.11.3-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 f0824beb03aff58d4062508b1dd4f737f08f5d2369f25a73c2350fe081beab2c
MD5 81df8e91c06595572583cd67fcb7d68f
BLAKE2b-256 8fbe28db1aa6c9442bfe993ee7b28fa3d5f92918e4ab1413909d13f3cbced2a7

See more details on using hashes here.

File details

Details for the file numpy-1.11.3-cp27-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.11.3-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 8cd184b0341e1db3a5619c85f875ce511ef0eb7ec01ec320116959a3de77f1b8
MD5 33bfb4c5f5608d3966a6600fa3d7623c
BLAKE2b-256 2c939556d25b1f23fd852fc2ddfcf68a4a62ba9e4ef83adabbf8921c80fce9a0

See more details on using hashes here.

File details

Details for the file numpy-1.11.3-cp27-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.11.3-cp27-none-win32.whl
Algorithm Hash digest
SHA256 f8b30c76e0f805da7ea641f52c3f6bade55d50a0767f9c89c50e4c42b2a1b34c
MD5 110b93cc26ca556b075316bee81f8652
BLAKE2b-256 6a493b7710051821f917288b9997e6e9e17a5cd52e49962a399cfb96c519a1bc

See more details on using hashes here.

File details

Details for the file numpy-1.11.3-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.11.3-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 674d0c1318890357f27ce3a8939e643eaf55140cfb8e84730aeee1dd769b0c21
MD5 479c0c8b50ab0ed4acca0a66887fe74c
BLAKE2b-256 68e8d68e1c47a2bd3f03cb81f1e635a55b776e51e4746f7204d541f6e3e9ffab

See more details on using hashes here.

File details

Details for the file numpy-1.11.3-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.11.3-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 1226e259d796207e8ef36762dce139e7da1cc0bb78f5d54e739252acd07834e5
MD5 cccfb3f765fa2eb4759590467a5f3fb1
BLAKE2b-256 9365fcdf5fa75cace5b1cdefb0ae8c559a374a5c4344f334a30509cf87e04888

See more details on using hashes here.

File details

Details for the file numpy-1.11.3-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.11.3-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 276cbb35b69eb2f0d5f264b7c71bdc1f4e91ecd3125d32cd1839873268239892
MD5 e3f454dc204b90015e4d8991b12069fb
BLAKE2b-256 a062c6b77df263092a18959223685f0c115f77054e5d79181893706c6026628b

See more details on using hashes here.

File details

Details for the file numpy-1.11.3-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.11.3-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 ca37b5bebcc4ebde39dfbff0bda69fdc28785a8ff21155fd7adacf473c7b40dd
MD5 ada01f12b747c0669be00be843fde6dd
BLAKE2b-256 dab3de9c309e1c27dd4c0c254d98a97e2c1db1988ec3f35de639f049227d3cc3

See more details on using hashes here.

File details

Details for the file numpy-1.11.3-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.11.3-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 5941d3dbd0afed1ecd3746c0371b2a8b79977d084004cc320c2a4cf9d88589d8
MD5 f36503c6665701e1ca0fd2953b6419dd
BLAKE2b-256 ddc1472b542ed716771a74adbc21a790613c1bd52a3cb4e280b4f6a9c2433298

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page