Skip to main content

NumPy: array processing for numbers, strings, records, and objects.

Project description

NumPy is a general-purpose array-processing package designed to efficiently manipulate large multi-dimensional arrays of arbitrary records without sacrificing too much speed for small multi-dimensional arrays. NumPy is built on the Numeric code base and adds features introduced by numarray as well as an extended C-API and the ability to create arrays of arbitrary type which also makes NumPy suitable for interfacing with general-purpose data-base applications.

There are also basic facilities for discrete fourier transform, basic linear algebra and random number generation.

All numpy wheels distributed from pypi are BSD licensed.

Windows wheels are linked against the ATLAS BLAS / LAPACK library, restricted to SSE2 instructions, so may not give optimal linear algebra performance for your machine. See http://docs.scipy.org/doc/numpy/user/install.html for alternatives.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.12.0.zip (4.8 MB view details)

Uploaded Source

Built Distributions

numpy-1.12.0-cp36-none-win_amd64.whl (7.7 MB view details)

Uploaded CPython 3.6 Windows x86-64

numpy-1.12.0-cp36-none-win32.whl (6.7 MB view details)

Uploaded CPython 3.6 Windows x86

numpy-1.12.0-cp36-cp36m-manylinux1_x86_64.whl (16.8 MB view details)

Uploaded CPython 3.6m

numpy-1.12.0-cp36-cp36m-manylinux1_i686.whl (12.7 MB view details)

Uploaded CPython 3.6m

numpy-1.12.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.12.0-cp35-none-win_amd64.whl (7.7 MB view details)

Uploaded CPython 3.5 Windows x86-64

numpy-1.12.0-cp35-none-win32.whl (6.7 MB view details)

Uploaded CPython 3.5 Windows x86

numpy-1.12.0-cp35-cp35m-manylinux1_x86_64.whl (16.8 MB view details)

Uploaded CPython 3.5m

numpy-1.12.0-cp35-cp35m-manylinux1_i686.whl (12.6 MB view details)

Uploaded CPython 3.5m

numpy-1.12.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.12.0-cp34-none-win_amd64.whl (7.5 MB view details)

Uploaded CPython 3.4 Windows x86-64

numpy-1.12.0-cp34-none-win32.whl (6.6 MB view details)

Uploaded CPython 3.4 Windows x86

numpy-1.12.0-cp34-cp34m-manylinux1_x86_64.whl (16.8 MB view details)

Uploaded CPython 3.4m

numpy-1.12.0-cp34-cp34m-manylinux1_i686.whl (12.7 MB view details)

Uploaded CPython 3.4m

numpy-1.12.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.12.0-cp27-none-win_amd64.whl (7.5 MB view details)

Uploaded CPython 2.7 Windows x86-64

numpy-1.12.0-cp27-none-win32.whl (6.6 MB view details)

Uploaded CPython 2.7 Windows x86

numpy-1.12.0-cp27-cp27mu-manylinux1_x86_64.whl (16.5 MB view details)

Uploaded CPython 2.7mu

numpy-1.12.0-cp27-cp27mu-manylinux1_i686.whl (12.4 MB view details)

Uploaded CPython 2.7mu

numpy-1.12.0-cp27-cp27m-manylinux1_x86_64.whl (16.5 MB view details)

Uploaded CPython 2.7m

numpy-1.12.0-cp27-cp27m-manylinux1_i686.whl (12.4 MB view details)

Uploaded CPython 2.7m

numpy-1.12.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.4 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file numpy-1.12.0.zip.

File metadata

  • Download URL: numpy-1.12.0.zip
  • Upload date:
  • Size: 4.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numpy-1.12.0.zip
Algorithm Hash digest
SHA256 ff320ecfe41c6581c8981dce892fe6d7e69806459a899e294e4bf8229737b154
MD5 33e5a84579f31829bbbba084fe0a4300
BLAKE2b-256 b79d8209e555ea5eb8209855b6c9e60ea80119dab5eff5564330b35aa5dc4b2c

See more details on using hashes here.

File details

Details for the file numpy-1.12.0-cp36-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.12.0-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 0bcf40e7717bc03d3af614a5bd8b8448f549abc922445e576198de9885547e69
MD5 3d29bf5c852b4eb81b127bbad001610e
BLAKE2b-256 454029bc3ccf91887e2e38b18d81adf847b062408a3fa8bdf7c4479c564e6275

See more details on using hashes here.

File details

Details for the file numpy-1.12.0-cp36-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.12.0-cp36-none-win32.whl
Algorithm Hash digest
SHA256 ca9ec2610751628f485a2fc8ca3f31980cb539d7f9477b72273f066640816ca2
MD5 8b660d969a04678ad21726580811e55d
BLAKE2b-256 d4a655f85fa298a26b89d516833d8f83feb270ee9cfd8c6cd047b2170d725ee6

See more details on using hashes here.

File details

Details for the file numpy-1.12.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.12.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 818a09855c5a257aea637c73755806dfec130ecf190130a34bf1546ef69b77e3
MD5 397600ce67594eaab38f0d3accc181ce
BLAKE2b-256 7ddb04b13cd69a66657e27dd8af68650b5c8c511501f108358653fca8e52bf86

See more details on using hashes here.

File details

Details for the file numpy-1.12.0-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.12.0-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 1595d07b935aac12aa62c27c59ad9e7b7f3072d9576fad18730efabe322ccc3f
MD5 56ce905c77bae20026cf15f5b303748a
BLAKE2b-256 70ca2a3c552d10491c6fd63780a23b6cd400e02a30ca9bc1acadc89fcd8ce4f4

See more details on using hashes here.

File details

Details for the file numpy-1.12.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.12.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 204ffa15185d4b94eaef06d3395bd6ae032fb9db3985a2e3fd758121062021a0
MD5 b8e5150a12bbf13ca4ab847839906e5f
BLAKE2b-256 7ac6035158a65ad8fb8ed606900f0af0f4dd7c4462f9e3d752ad9303cb367771

See more details on using hashes here.

File details

Details for the file numpy-1.12.0-cp35-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.12.0-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 84cec2549e94dd147a384d60d8ab342309f80c8e099b2325505a202cd3a764a5
MD5 ce2c1303b7be932e216388ba2480f581
BLAKE2b-256 2b89c1e5b28880468870c7f395fcd383aac3893f7bdcc237266498633b20ed61

See more details on using hashes here.

File details

Details for the file numpy-1.12.0-cp35-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.12.0-cp35-none-win32.whl
Algorithm Hash digest
SHA256 778c8c5f734c47c0292c4df17cc7d5acb4957dd8972793b9c3a6b37a333f4be0
MD5 edb061429a0ed84787205a5f18266bcb
BLAKE2b-256 ac7d125fbc2bd94d446b3e84a8a02b252b75032d7385552e8cda11db879dece4

See more details on using hashes here.

File details

Details for the file numpy-1.12.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.12.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 de35d0b8ff0c0499ff143c7b408fdb592c5e2e56801e30f992be1d8540ac8b12
MD5 1938e565fe049351342fb6800f14b0d8
BLAKE2b-256 101aca086475ab930049c174d98519b570bffe97a39b5b6944202b910ba300fa

See more details on using hashes here.

File details

Details for the file numpy-1.12.0-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.12.0-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 a0644c0f861c96146a641a160011069b7726791b80aa94791dcf24f0abcb8c09
MD5 3ddca2ebe93a880ece4e09b4756f3b7e
BLAKE2b-256 a6d69bf1fb68f877562d099446ecfef2636548f15349bd512a27e63b4e7959ee

See more details on using hashes here.

File details

Details for the file numpy-1.12.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.12.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 f6a56e2278348395279eedba201d344fd8cc1017c6b4fd6c3d9a08a81efe5dfa
MD5 21b3dafa7e4644ca27d15f91e02a9503
BLAKE2b-256 881020a403370eabccf9e7a092346e079d6a58828ffe2feac15eb5ee2e20e5ea

See more details on using hashes here.

File details

Details for the file numpy-1.12.0-cp34-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.12.0-cp34-none-win_amd64.whl
Algorithm Hash digest
SHA256 f77965ace763464336a2eb84a2ae14cefb58a6a5ceaa5fab4072308623a6d6e3
MD5 e65e9cf4864d17f1e490bc5d5b88c587
BLAKE2b-256 43eb96b7941c9c993e9e1c4ee5cdfabffc3817988b17969e510e4244ebfd2d48

See more details on using hashes here.

File details

Details for the file numpy-1.12.0-cp34-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.12.0-cp34-none-win32.whl
Algorithm Hash digest
SHA256 a8a402599b7e3f193ff97a859fde7f165df4d46d20621d05f535f25a437100e0
MD5 f5e25075731cedfbf24c7db494003cfd
BLAKE2b-256 dfed9efaf13a5d78d3a73eea0cced3becddfa92051bed8dfc4d39464e392feb0

See more details on using hashes here.

File details

Details for the file numpy-1.12.0-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.12.0-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 08ca549ac6e4f86a052e8d2d2eddcb00b61e642ddd3ef55b57c4756a06459604
MD5 0197a7f4060e82bf03a450fcac4f56a3
BLAKE2b-256 4856fd4698f72aa705a0feddef869fbff26011efdcfcaf1126a48f8a59043843

See more details on using hashes here.

File details

Details for the file numpy-1.12.0-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.12.0-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 249841fd5e211e4ccbeac276a7c794c7ac841e798508fb151dc67559c65941df
MD5 1b7af502fe2200652608073f6e13c233
BLAKE2b-256 3c4e702366b70b30e33a62d50ce4c8620f17c35e010d616c2509462baff70541

See more details on using hashes here.

File details

Details for the file numpy-1.12.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.12.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 29e3f343b61d009293070bafc1048a8370d0558cb4b0e26f69e71831922c6b31
MD5 e57f9f0ba8fed7cc8d5ef256e4dee3c9
BLAKE2b-256 7c8f969defa53c4fe99027658158a69b1b8d0831be1c2705db1eb474fd4536e2

See more details on using hashes here.

File details

Details for the file numpy-1.12.0-cp27-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.12.0-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 e307978ab4a5f7f3c88c0eadab482249b01bc6dc943e9fc32d6b696c1cd45ea0
MD5 a0e2cf28701964ce32b27ce3d2d670d5
BLAKE2b-256 90e8b5dde871d6ca99ef23dc68457bb7572e74d447fdd12f8c11f996120e8828

See more details on using hashes here.

File details

Details for the file numpy-1.12.0-cp27-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.12.0-cp27-none-win32.whl
Algorithm Hash digest
SHA256 70dfe7b936f7953f6366fa5bf03f127ec322b737469e97a41b7096af4673051c
MD5 5ea683e61094e0f5297f527d75d35f8d
BLAKE2b-256 9c35e503033f81c4627fc6ba6f92185563e5e95988b5e4df50b83c6af5720bd5

See more details on using hashes here.

File details

Details for the file numpy-1.12.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.12.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 160a3168325fa4ef04cddff168ab9cffd0e579a911fdf8d888dbf06be49d2253
MD5 9f9bc53d2e281831e1a75be0c09a9548
BLAKE2b-256 cb4719e96945ee6012459e85f87728633f05b1e8791677ae64370d16ac4c849e

See more details on using hashes here.

File details

Details for the file numpy-1.12.0-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.12.0-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 1ac518945ca78fc54b63bdd30f790ac4d509448d2d26d20e6c1c063b8d9d05fb
MD5 40688215dc3020bece11f186df88c254
BLAKE2b-256 de20f2424af5c7075b39809297d23da29719b5d3cbcb726df737922ef29d9a5f

See more details on using hashes here.

File details

Details for the file numpy-1.12.0-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.12.0-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 13acbf9ed3e7eb3691cd4e842804d06bfc5ba48b68b35b7d54addd0246def197
MD5 e6ac7b379bc53e3220fc9c0d8c85624d
BLAKE2b-256 5ba4761dd4596da94d3ce438d93673fcd8053eb368400526223ab7e981547592

See more details on using hashes here.

File details

Details for the file numpy-1.12.0-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.12.0-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 ea8115bb72a0c5d46f2a32dce490dcc27f9bea6c6ab6934df30420c2293e3411
MD5 cae3611aa666eef0597866dfc59a6671
BLAKE2b-256 bb7d4a1c08dca6b162ad5b33d50767e0c1a50a7d04695a5354bab580a9f6fea1

See more details on using hashes here.

File details

Details for the file numpy-1.12.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.12.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 bf5df5c600b3d798382bb7d050d2ac4345d9f5c1277283a695e36928945f3cfd
MD5 3d870f571fbc1dad2fd81515de689abf
BLAKE2b-256 4bfb99346d8d7d2460337f9e1772072d35e1274ca81ce9ef64f821d4686233b4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page