Skip to main content

NumPy: array processing for numbers, strings, records, and objects.

Project description

NumPy is a general-purpose array-processing package designed to efficiently manipulate large multi-dimensional arrays of arbitrary records without sacrificing too much speed for small multi-dimensional arrays. NumPy is built on the Numeric code base and adds features introduced by numarray as well as an extended C-API and the ability to create arrays of arbitrary type which also makes NumPy suitable for interfacing with general-purpose data-base applications.

There are also basic facilities for discrete fourier transform, basic linear algebra and random number generation.

All numpy wheels distributed from pypi are BSD licensed.

Windows wheels are linked against the ATLAS BLAS / LAPACK library, restricted to SSE2 instructions, so may not give optimal linear algebra performance for your machine. See http://docs.scipy.org/doc/numpy/user/install.html for alternatives.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.13.0.zip (5.0 MB view details)

Uploaded Source

Built Distributions

numpy-1.13.0-cp36-none-win_amd64.whl (7.8 MB view details)

Uploaded CPython 3.6 Windows x86-64

numpy-1.13.0-cp36-none-win32.whl (6.8 MB view details)

Uploaded CPython 3.6 Windows x86

numpy-1.13.0-cp36-cp36m-manylinux1_x86_64.whl (17.0 MB view details)

Uploaded CPython 3.6m

numpy-1.13.0-cp36-cp36m-manylinux1_i686.whl (12.9 MB view details)

Uploaded CPython 3.6m

numpy-1.13.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.13.0-cp35-none-win_amd64.whl (7.8 MB view details)

Uploaded CPython 3.5 Windows x86-64

numpy-1.13.0-cp35-none-win32.whl (6.8 MB view details)

Uploaded CPython 3.5 Windows x86

numpy-1.13.0-cp35-cp35m-manylinux1_x86_64.whl (16.9 MB view details)

Uploaded CPython 3.5m

numpy-1.13.0-cp35-cp35m-manylinux1_i686.whl (12.8 MB view details)

Uploaded CPython 3.5m

numpy-1.13.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.13.0-cp34-none-win_amd64.whl (7.6 MB view details)

Uploaded CPython 3.4 Windows x86-64

numpy-1.13.0-cp34-none-win32.whl (6.7 MB view details)

Uploaded CPython 3.4 Windows x86

numpy-1.13.0-cp34-cp34m-manylinux1_x86_64.whl (16.9 MB view details)

Uploaded CPython 3.4m

numpy-1.13.0-cp34-cp34m-manylinux1_i686.whl (12.9 MB view details)

Uploaded CPython 3.4m

numpy-1.13.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.13.0-cp27-none-win_amd64.whl (7.6 MB view details)

Uploaded CPython 2.7 Windows x86-64

numpy-1.13.0-cp27-none-win32.whl (6.7 MB view details)

Uploaded CPython 2.7 Windows x86

numpy-1.13.0-cp27-cp27mu-manylinux1_x86_64.whl (16.6 MB view details)

Uploaded CPython 2.7mu

numpy-1.13.0-cp27-cp27mu-manylinux1_i686.whl (12.6 MB view details)

Uploaded CPython 2.7mu

numpy-1.13.0-cp27-cp27m-manylinux1_x86_64.whl (16.6 MB view details)

Uploaded CPython 2.7m

numpy-1.13.0-cp27-cp27m-manylinux1_i686.whl (12.6 MB view details)

Uploaded CPython 2.7m

numpy-1.13.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.6 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file numpy-1.13.0.zip.

File metadata

  • Download URL: numpy-1.13.0.zip
  • Upload date:
  • Size: 5.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numpy-1.13.0.zip
Algorithm Hash digest
SHA256 dcff367b725586830ff0e20b805c7654c876c2d4585c0834a6049502b9d6cf7e
MD5 fd044f0b8079abeaf5e6d2e93b2c1d03
BLAKE2b-256 05840feb999c05f252af50a5fbc463268044feda92cdaad8cb0d0a6073d76057

See more details on using hashes here.

File details

Details for the file numpy-1.13.0-cp36-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.13.0-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 a61fd38d1ec67a5e3f0121522b3dddef4ba1407d175135447397cb8baec17860
MD5 30575a4ca25a896dfb2058d3b5ffd7b8
BLAKE2b-256 ab6bebcab6658967e097c2dcee3e54fb2e67d9293f4f35080eb28118ca40c921

See more details on using hashes here.

File details

Details for the file numpy-1.13.0-cp36-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.13.0-cp36-none-win32.whl
Algorithm Hash digest
SHA256 e8edf465be222e324608fd5dd58d60b050c7fd602c9b7710a11631ee7280f59f
MD5 512d719b3bb8c1d7db79ea6d39031d46
BLAKE2b-256 a36af671ea507e4efd3b4e3fca813964764b207fab3f4ac3935f713d9a4fdf34

See more details on using hashes here.

File details

Details for the file numpy-1.13.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.13.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 dc703270f1caabbe361052ef678d5a5f18f91dfe36b1c5572d0b60dba4835eb5
MD5 0aff850a97da7772da3fc0510b5ef28c
BLAKE2b-256 f8ce70cbaf09bdba60b624bb609fa53f7c4e2a0ea4b3c24132e934274d596121

See more details on using hashes here.

File details

Details for the file numpy-1.13.0-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.13.0-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 27b12b7412c6a1a6bdfd2142aa4c31ca54f0981d36fba787e4a92d4ff22d23a7
MD5 7887b9dedad1117d1153138077e2c982
BLAKE2b-256 4c9fae50f45069bac9ece79ebae589ab063383709923463afa5ffe2152e3e787

See more details on using hashes here.

File details

Details for the file numpy-1.13.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.13.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 4e9756c9882836690c6cfad0ae3fae51050d78a5766d3e9ecc7a8385425fb92a
MD5 6683b00432fefd540c758f4c0b3ca5a4
BLAKE2b-256 3eebabf6205486287ece9461b5a18f53e288bdaeaf568ab3d24ae0a7d4d6aa7f

See more details on using hashes here.

File details

Details for the file numpy-1.13.0-cp35-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.13.0-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 78ef0f0e2e1701a54555ecb7d2916375dcac462b6511d5cdb2de8a2f2296f501
MD5 1cb3d06cc800477e8b98eacc0c8ebf12
BLAKE2b-256 6f98310ff40d6bc9f5a2a99bd5d942523f22ff6976c0274e822489f9c6bcc803

See more details on using hashes here.

File details

Details for the file numpy-1.13.0-cp35-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.13.0-cp35-none-win32.whl
Algorithm Hash digest
SHA256 ce7b3c0644c9157874d1323906c497c92296ae956e5cef0e4107e1ff55939386
MD5 2627e76f99a7e4dd390968180af7f970
BLAKE2b-256 356fb805e41c44e171d7966ea9b4b4ee30113574f3cdf831f30fe761895cab25

See more details on using hashes here.

File details

Details for the file numpy-1.13.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.13.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e17a9ec296353b01596b5e669265418343b8d0f2dd82f541d0cf9a3fc7eaccc8
MD5 d6e6af5f3f5b5711501045b63e8281f4
BLAKE2b-256 f0b950edeee58c1bed8db12c636f890547e5de33c12ffc4214cf5531c34ba0b1

See more details on using hashes here.

File details

Details for the file numpy-1.13.0-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.13.0-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 70c30db61dbc10dd5bcb63e830aa8c2ce993eb6821054abce372f04cd36f9bb5
MD5 bacdd650dbbb3911e6b7bdec07482122
BLAKE2b-256 f9eff142eb2caa51136a5c1248e471a5899c26b915bc2524cdcdec0bb762a2f3

See more details on using hashes here.

File details

Details for the file numpy-1.13.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.13.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 ad699f255fba63814f7d55f67c4bf315fb5496f5ba6e0799ed11b00e78bf464f
MD5 43c4d5904eb8b5a198d76f640cada8d7
BLAKE2b-256 f721b34dc5ab7a4b8f318fb192bb9950b84aa23e83802ae2b1ea27172febf3d5

See more details on using hashes here.

File details

Details for the file numpy-1.13.0-cp34-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.13.0-cp34-none-win_amd64.whl
Algorithm Hash digest
SHA256 0c9c2da161951a041fc01ec1849555532122d6fd5b41144af81ae322e88bf0ef
MD5 d7e12859429ffdfba21b2122988309db
BLAKE2b-256 b24e1c630b8487ec867927a41d9c578281583ae27fa0604803c0e449aec5c42a

See more details on using hashes here.

File details

Details for the file numpy-1.13.0-cp34-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.13.0-cp34-none-win32.whl
Algorithm Hash digest
SHA256 560ca5248c2a8fd96ac75a05811eca0ce08dfeea2ee128c87c9c7261af366288
MD5 772aa4c3897428bf86762b5cd4f46c86
BLAKE2b-256 4ed9d7ec4b9508e6a89f80de3e18fe3629c3c089355bec453b55e271c53dd23f

See more details on using hashes here.

File details

Details for the file numpy-1.13.0-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.13.0-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 da0be0d25e845d65f540c92daa17b1bad06c3ed98a54840e6b980cb5d683647f
MD5 fb0974bef7d14cc7c8917adae4d1e339
BLAKE2b-256 d80ebc60aa4c1b3ae8f74653a5a657aa0f70b3d9d376b588644f2139d84ab146

See more details on using hashes here.

File details

Details for the file numpy-1.13.0-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.13.0-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 ee2bb63226aa933cddda2470e56de858669bdbb612b5bd7b2489408516bb3f24
MD5 daa0aff4c35c06dd63a9a2fb4b3bf3eb
BLAKE2b-256 87c7ed1236f84323ce5d922758e332621b81704095445d0d74b5533adbb7136d

See more details on using hashes here.

File details

Details for the file numpy-1.13.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.13.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 2f1ba22250725b1c719591a07d2146509aae5c620c43ecb9669a45487f7b9c89
MD5 c98b8ee7be1e9a628b1d64d89efae11e
BLAKE2b-256 63e1d67fdee7ca87bfada83783204beff93249abea67938419fbd880cc0d31f6

See more details on using hashes here.

File details

Details for the file numpy-1.13.0-cp27-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.13.0-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 2dc292415b18f08efe615c26b1567dd986006c47dd6b23c870db483db8e95015
MD5 543a4263ae9ca7d99c65bdd23315c00e
BLAKE2b-256 00e0294d665b0cf4bc566e0956f1b521592fd536153a4d212064bdd43000dec0

See more details on using hashes here.

File details

Details for the file numpy-1.13.0-cp27-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.13.0-cp27-none-win32.whl
Algorithm Hash digest
SHA256 e0eb78fd246a965c7c232df88485c887916ec72a3c589ccbaa3f22dc8471b154
MD5 e4e650f7208a4502c41c76dbd91dcb2f
BLAKE2b-256 f9f9e19e0b783f2a5e0624eeb6f8a76427c089c9af528346cd0a19353cda2dd8

See more details on using hashes here.

File details

Details for the file numpy-1.13.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.13.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5a9e42acf951c84d0fd349d677262d67b913fb399025e5885b7ade20b9a2ace9
MD5 a0b187652045bfb4c014f24c921c644b
BLAKE2b-256 ddb547bd2174dbb14e5fa2dd6ad28fd1d54d38e84d29c1b131a00354ddb0cae0

See more details on using hashes here.

File details

Details for the file numpy-1.13.0-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.13.0-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 36d932daf153d41789a189e0c266877cd4f2b719a9f9b672e8c3586d01cf0643
MD5 ef3d34d9098c111e71d83befaf97a0e9
BLAKE2b-256 c09db8a385900f539a427811f3899c8e721b97d5cf9095616a4b8168c46e868b

See more details on using hashes here.

File details

Details for the file numpy-1.13.0-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.13.0-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ed9212e489ac7f76506969581f1abb53fc30ac45bb28254759b634f4f51f0217
MD5 f9bf8291b035084c1b044dd251f7b2f6
BLAKE2b-256 512e4fd51aea41986fb36b8ff43f8b135fbb1ec793045f5f156cb70da7cdb1c9

See more details on using hashes here.

File details

Details for the file numpy-1.13.0-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.13.0-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 3ccd4f3176a6ca26fdfe31f4648af47a5ce0f681adc8321fe91e621dd26b7aae
MD5 2b55e8d75d346ce4b8b3d1a4bc4d1c7c
BLAKE2b-256 5db7e15b09ed5b00aee621dcdeca01e5055da20777d376c1f4d8b472cd8de182

See more details on using hashes here.

File details

Details for the file numpy-1.13.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.13.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 e5dd9d9808ffcc053ea2c2f54fcd75c460843439daba65a699d6a2c9b8adcf27
MD5 9a5e28a60ad340e06286650e6c9cdc86
BLAKE2b-256 8da215bbf1d6bd7b557047e9b4ccd50c1d5a49c88f0c84e7ef14434544d564b9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page