Skip to main content

NumPy: array processing for numbers, strings, records, and objects.

Project description

NumPy is a general-purpose array-processing package designed to efficiently manipulate large multi-dimensional arrays of arbitrary records without sacrificing too much speed for small multi-dimensional arrays. NumPy is built on the Numeric code base and adds features introduced by numarray as well as an extended C-API and the ability to create arrays of arbitrary type which also makes NumPy suitable for interfacing with general-purpose data-base applications.

There are also basic facilities for discrete fourier transform, basic linear algebra and random number generation.

All numpy wheels distributed from pypi are BSD licensed.

Windows wheels are linked against the ATLAS BLAS / LAPACK library, restricted to SSE2 instructions, so may not give optimal linear algebra performance for your machine. See http://docs.scipy.org/doc/numpy/user/install.html for alternatives.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.13.1.zip (5.0 MB view details)

Uploaded Source

Built Distributions

numpy-1.13.1-cp36-none-win_amd64.whl (7.8 MB view details)

Uploaded CPython 3.6 Windows x86-64

numpy-1.13.1-cp36-none-win32.whl (6.8 MB view details)

Uploaded CPython 3.6 Windows x86

numpy-1.13.1-cp36-cp36m-manylinux1_x86_64.whl (17.0 MB view details)

Uploaded CPython 3.6m

numpy-1.13.1-cp36-cp36m-manylinux1_i686.whl (12.9 MB view details)

Uploaded CPython 3.6m

numpy-1.13.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.13.1-cp35-none-win_amd64.whl (7.8 MB view details)

Uploaded CPython 3.5 Windows x86-64

numpy-1.13.1-cp35-none-win32.whl (6.8 MB view details)

Uploaded CPython 3.5 Windows x86

numpy-1.13.1-cp35-cp35m-manylinux1_x86_64.whl (16.9 MB view details)

Uploaded CPython 3.5m

numpy-1.13.1-cp35-cp35m-manylinux1_i686.whl (12.8 MB view details)

Uploaded CPython 3.5m

numpy-1.13.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.13.1-cp34-none-win_amd64.whl (7.6 MB view details)

Uploaded CPython 3.4 Windows x86-64

numpy-1.13.1-cp34-none-win32.whl (6.7 MB view details)

Uploaded CPython 3.4 Windows x86

numpy-1.13.1-cp34-cp34m-manylinux1_x86_64.whl (16.9 MB view details)

Uploaded CPython 3.4m

numpy-1.13.1-cp34-cp34m-manylinux1_i686.whl (12.9 MB view details)

Uploaded CPython 3.4m

numpy-1.13.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.13.1-cp27-none-win_amd64.whl (7.6 MB view details)

Uploaded CPython 2.7 Windows x86-64

numpy-1.13.1-cp27-none-win32.whl (6.7 MB view details)

Uploaded CPython 2.7 Windows x86

numpy-1.13.1-cp27-cp27mu-manylinux1_x86_64.whl (16.6 MB view details)

Uploaded CPython 2.7mu

numpy-1.13.1-cp27-cp27mu-manylinux1_i686.whl (12.6 MB view details)

Uploaded CPython 2.7mu

numpy-1.13.1-cp27-cp27m-manylinux1_x86_64.whl (16.6 MB view details)

Uploaded CPython 2.7m

numpy-1.13.1-cp27-cp27m-manylinux1_i686.whl (12.6 MB view details)

Uploaded CPython 2.7m

numpy-1.13.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.6 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file numpy-1.13.1.zip.

File metadata

  • Download URL: numpy-1.13.1.zip
  • Upload date:
  • Size: 5.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numpy-1.13.1.zip
Algorithm Hash digest
SHA256 c9b0283776085cb2804efff73e9955ca279ba4edafd58d3ead70b61d209c4fbb
MD5 2c3c0f4edf720c3a7b525dacc825b9ae
BLAKE2b-256 c03a40967d9f5675fbb097ffec170f59c2ba19fc96373e73ad47c2cae9a30aed

See more details on using hashes here.

File details

Details for the file numpy-1.13.1-cp36-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.13.1-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 f4b4b2da8c1b4f7c212742d2be03aa9277d46fd7b309025d930ad554e5739932
MD5 ab789d91bc6e423084df7fc73e667270
BLAKE2b-256 0d8a2de59f0154fe9cab6e12c404482714b8b8e8f9b0b561138f1eaf03b8d61f

See more details on using hashes here.

File details

Details for the file numpy-1.13.1-cp36-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.13.1-cp36-none-win32.whl
Algorithm Hash digest
SHA256 b064211a4d86fc8009ef90c66d1443ba4a0c56d481659e085a190299569955e3
MD5 0a5d74ebce74e2a557d7bc0183398ac1
BLAKE2b-256 e7f3d79f9aeb2a662e93bf662f7df3fe3892375848af7ddc61c101cbb40282da

See more details on using hashes here.

File details

Details for the file numpy-1.13.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.13.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d910a24f536f926bd56fb30d6f17ae8b89a1406e105087a49e014e000b00e8db
MD5 a3664260fc73c6c2645a00b22109a2b8
BLAKE2b-256 59e257c1a6af4ff0ac095dd68b12bf07771813dbf401faf1b97f5fc0cb963647

See more details on using hashes here.

File details

Details for the file numpy-1.13.1-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.13.1-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 94cb6ef9ffd15d7d904d0825ada642a51dc8890cdc06f1e4fb8e46cff79fe2ef
MD5 6ab8632d38c0313d9e063841a7e43edf
BLAKE2b-256 b935dfe4ea1ac0df18168939841c119a320745aee1f45dd74c2e1477a383d330

See more details on using hashes here.

File details

Details for the file numpy-1.13.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.13.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 42b3cf886701bb16f3bdf2ae6c39af67b464cdd67d5fc86619ef2a876a23de27
MD5 449926c081bd27655d8bf76e03c5c75c
BLAKE2b-256 f74a1721d26e2aff6f63b9d9c83dba6f0985133d3a8e3257f0b30564726e1de3

See more details on using hashes here.

File details

Details for the file numpy-1.13.1-cp35-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.13.1-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 405c3dbb6a57415ec8576ff1c0248f332ac1c3be2e5eea04d498dad8431bf57b
MD5 4df5bb3eb4787ff9850c1a5694922ab4
BLAKE2b-256 96832491eea445053e7c0838cf90694e2cb6503fe768a5d57f945bacca6702d3

See more details on using hashes here.

File details

Details for the file numpy-1.13.1-cp35-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.13.1-cp35-none-win32.whl
Algorithm Hash digest
SHA256 b49caeb170e54cc59863017a199667a51526bd906bcd5ee340fcf0e01bd7fa94
MD5 dd062ef029279bd795653a768d50180d
BLAKE2b-256 9bbeca9e761a1099b68ea194fc9b69dc2ab6a35c6fc7beeed945b6f62ff18356

See more details on using hashes here.

File details

Details for the file numpy-1.13.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.13.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9a8515002f143a5934f25ad2aacdfd1fcf57a7f5da6142c439eb8787ef65e8a6
MD5 4558a2357849d9ef7b80260a76b7c990
BLAKE2b-256 1a4540d946e712d4f2a767db001f58020e33b7d1dc77c09fab03a5883336792d

See more details on using hashes here.

File details

Details for the file numpy-1.13.1-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.13.1-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 a09a4707066fe9431c6b79a1be922bc126f4bc50502ae7e9f67d40917d0cc6d4
MD5 a5b6bffc5a0e4950748ab0969457a728
BLAKE2b-256 d42d2f0873e45c7c53776bee6edb56e292a8ee29fe8bb0ad22e6062c66daf43a

See more details on using hashes here.

File details

Details for the file numpy-1.13.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.13.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 c1833829526ce8f5177a3e07554b6c98c194072f66f018839ecd1ef2d15e6c4a
MD5 b14a4749abbab74c21ef0743f7426245
BLAKE2b-256 d9aa850b4461a43bbd1d2ff75c97de4cbae7a06884c5c351c5c2a5cfb796a71b

See more details on using hashes here.

File details

Details for the file numpy-1.13.1-cp34-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.13.1-cp34-none-win_amd64.whl
Algorithm Hash digest
SHA256 ed6a909a78e29a4056e30f918a26b231e33edc77bd785bbceb461877baf9feb5
MD5 062bf4ed9e0fd5af995a17360e7bdec9
BLAKE2b-256 70bbf9c66f54d76e060edc69973f804a7d505bc1369767c09acec40fa5ebbea7

See more details on using hashes here.

File details

Details for the file numpy-1.13.1-cp34-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.13.1-cp34-none-win32.whl
Algorithm Hash digest
SHA256 1400ec59c7f6c4f9390cc3bc5e56a6cbae2c30b39024eef317a0b52fe9c174c6
MD5 b1f13004ee992203d8c15940d60d0e7c
BLAKE2b-256 19acdbb88d66f839be4f7bbd06d241968c4b6792a4bdc5d509d09f81d862de1b

See more details on using hashes here.

File details

Details for the file numpy-1.13.1-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.13.1-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 838e48df3703c8747f355cd6386e0680b906a2f7b2bbd304e8a2d531692484ce
MD5 c51520d0d3836c91cba18d1fa8cf299c
BLAKE2b-256 1beef65826b2880f67652c21326565b4c166c7cdb1019f84b82af65e625475cd

See more details on using hashes here.

File details

Details for the file numpy-1.13.1-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.13.1-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 43722270fbfb07d91558985a3da37aa92a2d4e2d271182526959a5773f9fb12a
MD5 4a9f08ad5f3073ecaeea939158eaf955
BLAKE2b-256 0ebe0f3a2d4c2a16ca71820119d01ac87e3151f91a0d990b6b96058d2ec1e8d1

See more details on using hashes here.

File details

Details for the file numpy-1.13.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.13.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 436d47018c3cd2b9723ed3cd4ed4698ea7641449c71096781478ef6a20ae3bd0
MD5 3eee3605dd61f02583264eb5697d8207
BLAKE2b-256 b420e5bc57a8df0cb98a800cead0b8c9538f795706fa51c65e05ee4906f693af

See more details on using hashes here.

File details

Details for the file numpy-1.13.1-cp27-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.13.1-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 1980c4bc1eb495624c8414f3763da83b91d37c3c69772ab6912e9a857a143cdb
MD5 245e3ebe32cf60d9d16e7267aa4292fc
BLAKE2b-256 d8d50451014d76ef9b85c86c13b3aaa16cd69d3d6780c4dbd51978253a82c482

See more details on using hashes here.

File details

Details for the file numpy-1.13.1-cp27-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.13.1-cp27-none-win32.whl
Algorithm Hash digest
SHA256 4b7da62ba159bfc5fee6f54709b0708686ee15081f16dc5f81cda7f1e0e77941
MD5 21c4dc286991347f506c0e27475f9058
BLAKE2b-256 a9d856777770f7d6c1fb028c38d4c6a9fe93f56e1b7b0d21ccdb5c0c27ecb329

See more details on using hashes here.

File details

Details for the file numpy-1.13.1-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.13.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 73fd54d9787f4f8747f823a7e2d0693da94c66b670ccf436e4bb488bbcd5ce8c
MD5 de272621d41b7856e1580307be9d1fba
BLAKE2b-256 5fd29fa0201944933afd6d059f1e32aa6bdb203b23ab62fc823d3adf36295b9a

See more details on using hashes here.

File details

Details for the file numpy-1.13.1-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.13.1-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 05a7a81397e1391ae34cc0d14764a31ab6f73dbd0abe0952b3550d3ad4df265d
MD5 7ecd9304c319fc6b9ea481d6bf2e5051
BLAKE2b-256 7ac12e6c90f98452a20ebb7bcec2cc75f17e411dc401b462f4f8d2ce2703135f

See more details on using hashes here.

File details

Details for the file numpy-1.13.1-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.13.1-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 02e6279d95081086469e6ed83c708c4c48ed03a28ab87c71bea28af3b95fa56d
MD5 7906018278f3471a9a166a3975523ddd
BLAKE2b-256 b3a5e969e91993badec3b440c4fd144ddaff5cfd4b06f1d29fd75e53f8f3a9a7

See more details on using hashes here.

File details

Details for the file numpy-1.13.1-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.13.1-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 ab6abc2083013dd86a8fcba2ba16bab00690cb81db62588781d656572809c9a9
MD5 7774a1a5f93b45bfa7045b98eb102cca
BLAKE2b-256 e7d2eb8612b41a0d657529da8c2c23f83e4d9665e2f3b2d18d8e63696d1c4d73

See more details on using hashes here.

File details

Details for the file numpy-1.13.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.13.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 91a4f5c6594a61b57b0ab6031a084fa3686b1e847cc2215983e444583594b529
MD5 010a6325ec8e7df2f305e716c871880a
BLAKE2b-256 dddb3807a832fabfb105498a860b8f5908c90b9812ed86ed76e17658fe8a0ff6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page