Skip to main content

NumPy: array processing for numbers, strings, records, and objects.

Project description

NumPy is a general-purpose array-processing package designed to efficiently manipulate large multi-dimensional arrays of arbitrary records without sacrificing too much speed for small multi-dimensional arrays. NumPy is built on the Numeric code base and adds features introduced by numarray as well as an extended C-API and the ability to create arrays of arbitrary type which also makes NumPy suitable for interfacing with general-purpose data-base applications.

There are also basic facilities for discrete fourier transform, basic linear algebra and random number generation.

All numpy wheels distributed from pypi are BSD licensed.

Windows wheels are linked against the ATLAS BLAS / LAPACK library, restricted to SSE2 instructions, so may not give optimal linear algebra performance for your machine. See http://docs.scipy.org/doc/numpy/user/install.html for alternatives.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.13.3.zip (5.0 MB view details)

Uploaded Source

Built Distributions

numpy-1.13.3-cp36-none-win_amd64.whl (13.1 MB view details)

Uploaded CPython 3.6 Windows x86-64

numpy-1.13.3-cp36-cp36m-manylinux1_x86_64.whl (17.0 MB view details)

Uploaded CPython 3.6m

numpy-1.13.3-cp36-cp36m-manylinux1_i686.whl (12.9 MB view details)

Uploaded CPython 3.6m

numpy-1.13.3-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.13.3-cp35-none-win_amd64.whl (13.1 MB view details)

Uploaded CPython 3.5 Windows x86-64

numpy-1.13.3-cp35-cp35m-manylinux1_x86_64.whl (16.9 MB view details)

Uploaded CPython 3.5m

numpy-1.13.3-cp35-cp35m-manylinux1_i686.whl (12.8 MB view details)

Uploaded CPython 3.5m

numpy-1.13.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.13.3-cp34-none-win_amd64.whl (14.4 MB view details)

Uploaded CPython 3.4 Windows x86-64

numpy-1.13.3-cp34-cp34m-manylinux1_x86_64.whl (16.9 MB view details)

Uploaded CPython 3.4m

numpy-1.13.3-cp34-cp34m-manylinux1_i686.whl (12.9 MB view details)

Uploaded CPython 3.4m

numpy-1.13.3-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.13.3-cp27-none-win_amd64.whl (13.0 MB view details)

Uploaded CPython 2.7 Windows x86-64

numpy-1.13.3-cp27-cp27mu-manylinux1_x86_64.whl (16.6 MB view details)

Uploaded CPython 2.7mu

numpy-1.13.3-cp27-cp27mu-manylinux1_i686.whl (12.6 MB view details)

Uploaded CPython 2.7mu

numpy-1.13.3-cp27-cp27m-manylinux1_x86_64.whl (16.6 MB view details)

Uploaded CPython 2.7m

numpy-1.13.3-cp27-cp27m-manylinux1_i686.whl (12.6 MB view details)

Uploaded CPython 2.7m

numpy-1.13.3-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.6 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.13.3-2-cp36-none-win32.whl (6.8 MB view details)

Uploaded CPython 3.6 Windows x86

numpy-1.13.3-2-cp35-none-win32.whl (6.8 MB view details)

Uploaded CPython 3.5 Windows x86

numpy-1.13.3-2-cp34-none-win32.whl (6.7 MB view details)

Uploaded CPython 3.4 Windows x86

numpy-1.13.3-2-cp27-none-win32.whl (6.7 MB view details)

Uploaded CPython 2.7 Windows x86

File details

Details for the file numpy-1.13.3.zip.

File metadata

  • Download URL: numpy-1.13.3.zip
  • Upload date:
  • Size: 5.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numpy-1.13.3.zip
Algorithm Hash digest
SHA256 36ee86d5adbabc4fa2643a073f93d5504bdfed37a149a3a49f4dde259f35a750
MD5 300a6f0528122128ac07c6deb5c95917
BLAKE2b-256 bf2d005e45738ab07a26e621c9c12dc97381f372e06678adf7dc3356a69b5960

See more details on using hashes here.

File details

Details for the file numpy-1.13.3-cp36-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.13.3-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 c8dc6aa96882df6323bf9545934e37c6e05959bd789ae4b14d50509b093907aa
MD5 8748204cc74d46f617c316507360ccb3
BLAKE2b-256 e97c5665454a5cea3db586b315fa167d4b8b7963fdcc98c3b6578bc5eb4e6153

See more details on using hashes here.

File details

Details for the file numpy-1.13.3-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.13.3-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e8e0e75db757e41463888939d26c8058b4ecd25e563c597e9119f512dc0ee1da
MD5 bcbfbd9d0dbe026fd59a7756e190cdfa
BLAKE2b-256 57a7e3e6bd9d595125e1abbe162e323fd2d06f6f6683185294b79cd2cdb190d5

See more details on using hashes here.

File details

Details for the file numpy-1.13.3-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.13.3-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 7dfa5b49fb2a080bd0d39bfbcff1177bacb14fcb28c857fd65fd0c18938935de
MD5 ad1b9be95891adc1f7f7e9a23c1fe92d
BLAKE2b-256 004744a3bd240574fd8369b1c67747da50eb1f5fd09108ce3ab0b49510b5d8da

See more details on using hashes here.

File details

Details for the file numpy-1.13.3-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.13.3-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 fa656dccfa9141774440575a6e7875d08b93f4a332eb5ae40877b26bed291c01
MD5 dd2f6c5e72526d45fdd09c22b85e4bb8
BLAKE2b-256 7506faf181739f682da35f1310a904e650fc4706558b5657d8ec2f6b29c45220

See more details on using hashes here.

File details

Details for the file numpy-1.13.3-cp35-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.13.3-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 b162c6b044960b4ea0f42be049ce2af1d18c60f82748f0a27bd5ad182a731bf3
MD5 5b5ad3cdc43c950b8a26ab1bf3413e46
BLAKE2b-256 54b57d539652dafd4ef88e5e7aa4d26a604c321e2dcb3e81069a1ed75c4cbd6e

See more details on using hashes here.

File details

Details for the file numpy-1.13.3-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.13.3-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 479863de17f66810db00bccf35289555365da45d3b053ccf539b95ab3b9c24f6
MD5 94c0a5c9aa6fd35862cbe7862fd68f36
BLAKE2b-256 0d416c224571decd61c2578baedfdb0eec6283617c6679c35b20973f4e68aeaf

See more details on using hashes here.

File details

Details for the file numpy-1.13.3-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.13.3-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 9cad35b911e150f00bb8080950c7e9f172714bbd0234f5ab74b4e3e2d9288b37
MD5 6ac434243bc3ed40e9854b319f76b1b5
BLAKE2b-256 3f809f6f864afe4727c86bdd829a0e31e270f2a2975f5a2972c17ccb51989334

See more details on using hashes here.

File details

Details for the file numpy-1.13.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.13.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 09b87d652c03508447d0f618e1d3ae57595acd3e0f0c11ac91bf68ed7bdb3a28
MD5 d2f98af88264169f5cef760d95cef0f0
BLAKE2b-256 f3afe4c538ef267b7eaf8a13655ccc1d88e0364f35d751fd80964f1d914130e3

See more details on using hashes here.

File details

Details for the file numpy-1.13.3-cp34-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.13.3-cp34-none-win_amd64.whl
Algorithm Hash digest
SHA256 2875e8055a1ea8d933b1c9d0f8714c0aa11c097bfadfcb8564c4d868fbf09a41
MD5 cf208337059f8a48235a7741f04c9e49
BLAKE2b-256 20ac360bab96eb8d0fce64fbbd1bf0263a494fededdd4d6298636aded6e78efa

See more details on using hashes here.

File details

Details for the file numpy-1.13.3-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.13.3-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8969c8f987f8bcc3e30c014532cfc20e4a8f86a50c361596e086310853adacb7
MD5 264590d2df37212e97a91c0e5828a452
BLAKE2b-256 dd3c78edab4a88addb6aae8c0b2b675bb5a0d383d0915451823c02a35a02ac7c

See more details on using hashes here.

File details

Details for the file numpy-1.13.3-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.13.3-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 11fcbed36c101a3b9c4636e791efccba82409ebbedaba938c97be8bdddd029cc
MD5 2992819fbaa8acd34529479592b3d376
BLAKE2b-256 1a0b013d5b1d6ca57e9f6cd1684be18e195d4c28a06ba608b3c0ea192d18c6fd

See more details on using hashes here.

File details

Details for the file numpy-1.13.3-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.13.3-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 b2f98838f4bbc3bf23af7e97ffcad18a2dc6bbb0726796781e02b9347af6685f
MD5 819c122467a1053d4802fd7ce984a30a
BLAKE2b-256 57ea48d2720b4b63e77f5dc9fda76b43ac40cd11f96f5503dd3d033afba76ac7

See more details on using hashes here.

File details

Details for the file numpy-1.13.3-cp27-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.13.3-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 4c767b6d9c9a071bb36ea34eb240ee5192fe0bc4c13be5e6c51e0350a30f7ac0
MD5 1ec7662240b1dd91fb801061409ab3e3
BLAKE2b-256 9146fd556f3222ccfd1a7bb7f72a194193aab6a086355b89e985a7cb321b9f3f

See more details on using hashes here.

File details

Details for the file numpy-1.13.3-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.13.3-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 da2f47e46d7a93b73891d1981378717dc73c6ad5cc4fd23c934bfea7847fa958
MD5 f6d06d326e873d626576bd705e4f29a2
BLAKE2b-256 ebbe737f3df5806192ac4096e549e48c8c76cfaa2fb880a1c62a7bb085adaa9b

See more details on using hashes here.

File details

Details for the file numpy-1.13.3-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.13.3-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 6c6feb0647380db6e1d5d49ef9fb59c42240f25fb8df8b6e82ecb436c7e0621a
MD5 95e59446abb9152ed6af36b655e35dfe
BLAKE2b-256 25861a1453bb2354092779a1de6707bdbf1e47d060d33aee7a22dbabd0691c84

See more details on using hashes here.

File details

Details for the file numpy-1.13.3-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.13.3-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c4b1914d86c43399438518a2ac8bcba2fb64dd5a18efddded3783b9daae70933
MD5 64bc7dc4a503398e0b4cc48778136374
BLAKE2b-256 b6fc34342ee8ea0c413679ddfb23d73a132fc7ecbf479383de9f0946344ec73c

See more details on using hashes here.

File details

Details for the file numpy-1.13.3-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.13.3-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 62b09f3d1ea01d79c16a6642cb21599f53b9338c59971b2418a573155d2202ec
MD5 408f1f0070dfbc0569b440083febeb82
BLAKE2b-256 fa59903aba834f27f9f35aa8d12b0fc7b7bf742ef59e773d99fe008e9bd1e6b7

See more details on using hashes here.

File details

Details for the file numpy-1.13.3-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.13.3-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 929928932f91082a168e36984179deddd58f8e98822ad2f33a2955d7c4eec596
MD5 b660f17365f0dfc5e5904c21f15ac46e
BLAKE2b-256 eadff0671353e3d2eab4c87df014ad09505268561f6b09d0dc257d1b32653cfe

See more details on using hashes here.

File details

Details for the file numpy-1.13.3-2-cp36-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.13.3-2-cp36-none-win32.whl
Algorithm Hash digest
SHA256 539345898a4ae17421c159ae2a350901a5e6ce3da8f24168c6c67b3536e13de8
MD5 5add1046e7c1b33b865edafd1a6a7577
BLAKE2b-256 6af0bccdf94ef3026c925ab46ef14aa47bf2f97758affc873ea3ba5db1da731b

See more details on using hashes here.

File details

Details for the file numpy-1.13.3-2-cp35-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.13.3-2-cp35-none-win32.whl
Algorithm Hash digest
SHA256 d29e72413b66df23c75b9b469253c823698ea2e00f58e9e0df64b7a50696e8ac
MD5 3fd27b05b46c473a584505ff6a50a5fa
BLAKE2b-256 d90dd54ee0e8601c05532773eec45a5dc497806606c3294b3bdc20cf106b290c

See more details on using hashes here.

File details

Details for the file numpy-1.13.3-2-cp34-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.13.3-2-cp34-none-win32.whl
Algorithm Hash digest
SHA256 f5c9ca457057cd5e12ddab36cded8b1f38bf1f45bf550d4ca2839b11ec57f597
MD5 13cd744cbb51b90ea446c01241ca2cde
BLAKE2b-256 5e9fb192c2d9c4473b74c755a9368dfa4c0a2ba983feb15886dd49ad740beb44

See more details on using hashes here.

File details

Details for the file numpy-1.13.3-2-cp27-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.13.3-2-cp27-none-win32.whl
Algorithm Hash digest
SHA256 910e7ae5eeee8d322775187692c5c66719cd58d230fbfd57245ea3cf75716910
MD5 53600ccf171825920dddf0e9a1d9e0c8
BLAKE2b-256 fd32196073188f5b8b464e0fabb470f971fa5dcd91b55726a43b40b008212358

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page