Skip to main content

NumPy: array processing for numbers, strings, records, and objects.

Project description

NumPy is a general-purpose array-processing package designed to efficiently manipulate large multi-dimensional arrays of arbitrary records without sacrificing too much speed for small multi-dimensional arrays. NumPy is built on the Numeric code base and adds features introduced by numarray as well as an extended C-API and the ability to create arrays of arbitrary type which also makes NumPy suitable for interfacing with general-purpose data-base applications.

There are also basic facilities for discrete fourier transform, basic linear algebra and random number generation.

All numpy wheels distributed from pypi are BSD licensed.

Windows wheels are linked against the ATLAS BLAS / LAPACK library, restricted to SSE2 instructions, so may not give optimal linear algebra performance for your machine. See http://docs.scipy.org/doc/numpy/user/install.html for alternatives.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.14.0.zip (4.9 MB view details)

Uploaded Source

Built Distributions

numpy-1.14.0-cp36-none-win_amd64.whl (13.4 MB view details)

Uploaded CPython 3.6 Windows x86-64

numpy-1.14.0-cp36-none-win32.whl (9.8 MB view details)

Uploaded CPython 3.6 Windows x86

numpy-1.14.0-cp36-cp36m-manylinux1_x86_64.whl (17.2 MB view details)

Uploaded CPython 3.6m

numpy-1.14.0-cp36-cp36m-manylinux1_i686.whl (13.2 MB view details)

Uploaded CPython 3.6m

numpy-1.14.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.14.0-cp35-none-win_amd64.whl (13.4 MB view details)

Uploaded CPython 3.5 Windows x86-64

numpy-1.14.0-cp35-none-win32.whl (9.8 MB view details)

Uploaded CPython 3.5 Windows x86

numpy-1.14.0-cp35-cp35m-manylinux1_x86_64.whl (17.1 MB view details)

Uploaded CPython 3.5m

numpy-1.14.0-cp35-cp35m-manylinux1_i686.whl (13.1 MB view details)

Uploaded CPython 3.5m

numpy-1.14.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.14.0-cp34-none-win_amd64.whl (13.3 MB view details)

Uploaded CPython 3.4 Windows x86-64

numpy-1.14.0-cp34-none-win32.whl (9.8 MB view details)

Uploaded CPython 3.4 Windows x86

numpy-1.14.0-cp34-cp34m-manylinux1_x86_64.whl (17.2 MB view details)

Uploaded CPython 3.4m

numpy-1.14.0-cp34-cp34m-manylinux1_i686.whl (13.1 MB view details)

Uploaded CPython 3.4m

numpy-1.14.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.14.0-cp27-none-win_amd64.whl (13.3 MB view details)

Uploaded CPython 2.7 Windows x86-64

numpy-1.14.0-cp27-none-win32.whl (9.8 MB view details)

Uploaded CPython 2.7 Windows x86

numpy-1.14.0-cp27-cp27mu-manylinux1_x86_64.whl (16.9 MB view details)

Uploaded CPython 2.7mu

numpy-1.14.0-cp27-cp27mu-manylinux1_i686.whl (12.8 MB view details)

Uploaded CPython 2.7mu

numpy-1.14.0-cp27-cp27m-manylinux1_x86_64.whl (16.9 MB view details)

Uploaded CPython 2.7m

numpy-1.14.0-cp27-cp27m-manylinux1_i686.whl (12.8 MB view details)

Uploaded CPython 2.7m

numpy-1.14.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.7 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file numpy-1.14.0.zip.

File metadata

  • Download URL: numpy-1.14.0.zip
  • Upload date:
  • Size: 4.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numpy-1.14.0.zip
Algorithm Hash digest
SHA256 3de643935b212307b420248018323a44ec51987a336d1d747c1322afc3c099fb
MD5 c12d4bf380ac925fcdc8a59ada6c3298
BLAKE2b-256 ee667c2690141c520db08b6a6f852fa768f421b0b50683b7bbcd88ef51f33170

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.0-cp36-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.14.0-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 7c5276763646480143d5f3a6c2acb2885460c765051a1baf4d5070f63d05010f
MD5 f3db47f66b406f2803b681051f452f6e
BLAKE2b-256 8a94bd35546ad10fbf8d668a24e456d1b14a30e45bc53389a3439154fd9bdc43

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.0-cp36-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.14.0-cp36-none-win32.whl
Algorithm Hash digest
SHA256 6112f152b76a28c450bbf665da11757078a724a90330112f5b7ea2d6b6cefd67
MD5 3bee8e2e4414a9df909d6510bd803aa1
BLAKE2b-256 3a8ce376d4e6bfd6bf6cc3770ea5b7db071b7cf64b58b80f11c50900d24cbf6d

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.14.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7880f412543e96548374a4bb1d75e4cdb8cad80f3a101ed0f8d0e0428f719c1c
MD5 34f763b99cc39ca3224c158ec82e2b39
BLAKE2b-256 dcac5c270dffb864f23315e9c1f9e0a0b300c797b3c170666c031c4de42aacae

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.0-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.14.0-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 24bbec9a199f938eab75de8390f410969bc33c218e5430fa1ae9401b00865255
MD5 3c72836ee01e7b88d7cebee0a1c94c6e
BLAKE2b-256 978550498a539dc5c483e5b1baf4cc7326d1b975397d176d39700cee0c7c2232

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.14.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 98b1ac79c160e36093d7914244e40ee1e7164223e795aa2c71dcce367554e646
MD5 5a6456f4471b2f7d03fec5759e929544
BLAKE2b-256 33c41ea5344793c159556110e42c94c9374cb08ce2a2727374cd467bd97f6579

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.0-cp35-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.14.0-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 1479b46b6040b5c689831496354c8859c456b152d37315673a0c18720b41223b
MD5 b6d917bb34760e0f659c671efc08c602
BLAKE2b-256 be34722f7b05f5ad514803c4375eef1df147c9f5a62f277221a2a2ed92a3872c

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.0-cp35-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.14.0-cp35-none-win32.whl
Algorithm Hash digest
SHA256 97507349abb7d1f6b76b877258defe8720833881dc7e7fd052bac90c88587387
MD5 f42aab8c9d6a21f60b051d6ea0b33425
BLAKE2b-256 6b2585766e5e1cc2f29f72daa1e35646269d5f1888887a317951c43494bcb377

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.14.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 91101216d72749df63968d86611b549438fb18af2c63849c01f9a897516133c7
MD5 47de646ff0d4591431030ee93412f9f3
BLAKE2b-256 557f50d7b4e9f3493779edb3cec0a6ccf68090bf95f0a3b8a093fc0d467cc6d5

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.0-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.14.0-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 4e13f1a848fde960dea33702770265837c72b796a6a3eaac7528cfe75ddefadd
MD5 00cbdb6d9aa1eca97ecdb73a2705730b
BLAKE2b-256 66e655053b09fd7891337f517fc4576f514ac8ab1a55bc4ebe043565cfc5cdb6

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.14.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 194074058c22a4066e1b6a4ea432486ee468d24ab16f13630c1030409e6b8666
MD5 1a58fbaea199e425b71b3bfb1276d957
BLAKE2b-256 16294121b94d1588f27b2ae72f3991e31d14e1863283db1637df84fa873db298

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.0-cp34-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.14.0-cp34-none-win_amd64.whl
Algorithm Hash digest
SHA256 ff8a4b2c3ac831964f529a2da506c28d002562b230261ae5c16885f5f53d2e75
MD5 80ead56627e40a00d0832793f5798ce8
BLAKE2b-256 10ca78e5e05ee6ae1fb834dfe1cc1e6d7f6ffba2cde9f949a8cdf6a18a40b44a

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.0-cp34-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.14.0-cp34-none-win32.whl
Algorithm Hash digest
SHA256 eef6af1c752eef538a96018ef9bdf8e37bbf28aab50a1436501a4aa47a6467df
MD5 bf839d99514ecc03da1a2dc42808c1c7
BLAKE2b-256 30f654fb2113b34752844b35aa1b2f8092d67b83aa053ead4d30d2e8af3845b6

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.0-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.14.0-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b2547f57d05ba59df4289493254f29f4c9082d255f1f97b7e286f40f453e33a1
MD5 8179996e99adfbe7c66c5a9f7ad37139
BLAKE2b-256 bacbb367fc21b047669e81db8fde4a8da3fb733bdf3dc9dd158e6d3a41f65bb9

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.0-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.14.0-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 93b26d6c06a22e64d56aaca32aaaffd27a4143db0ac2f21a048f0b571f2bfc55
MD5 c9ce8e4de0293585ad8455a829cdbdff
BLAKE2b-256 f008c61adef97f47d31e4cca41df1d0f0f1fa0f4827442421968225937098c31

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.14.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 781d3197da49c421a07f250750de70a52c42af08ca02a2f7bdb571c0625ae7eb
MD5 8bc2cc282df9597fe4c5fda72d0ff851
BLAKE2b-256 32d9cb37e522adbe2608b8b437b98ba14dbea1c3008714d5d1d3f78e5bd89dc7

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.0-cp27-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.14.0-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 9ddf384ac3aacb72e122a8207775cc29727cbd9c531ee1a4b95754f24f42f7f3
MD5 09bef789f8d9352cafe98a6773c53f3a
BLAKE2b-256 f0846387a1aac71170707b54fa4c6dc5fbe3d1d8682cc06df5fe87ecfbfb311f

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.0-cp27-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.14.0-cp27-none-win32.whl
Algorithm Hash digest
SHA256 5c54fb98ecf42da59ed93736d1c071842482b18657eb16ba6e466bd873e1b923
MD5 23248896d89fd09ef06aecbdc1e74eb7
BLAKE2b-256 0fb0ffb6c683264c83262b2924e3f760d373fd9672bf936adb1e6baa94acfeb6

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.14.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 75471acf298d455b035226cc609a92aee42c4bb6aa71def85f77fa2c2b646b61
MD5 bb048ccc49572e5e661ec7ead183272d
BLAKE2b-256 0d8ae0223a40f980e0442a2045dcf79e4a8a90339593525599a0add318da2428

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.0-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.14.0-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 c5eccb4bf96dbb2436c61bb3c2658139e779679b6ae0d04c5e268e6608b58053
MD5 edea7b57d4d924173c9c6d8125affe4e
BLAKE2b-256 8ada267706a9ef37e4d12f7d73034d8f3889475f302ae1bc15e7431d74d5327d

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.0-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.14.0-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 289ff717138cd9aa133adcbd3c3e284458b9c8230db4d42b39083a3407370317
MD5 8ba61f88afea560cc93ffddc9ea717d8
BLAKE2b-256 499fc29411772448aa46ec3dbf27f79677ae57c53d5ab4164e0bb8e0f4fe4333

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.0-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.14.0-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 a476e437d73e5754aa66e1e75840d0163119c3911b7361f4cd06985212a3c3fb
MD5 ab7e3518c7fe2a0d8e3c1e90c32ab57b
BLAKE2b-256 31414ca51a7a02481b7a6e5d5f650fd98d08aebe7229949c0753300ba13e7fd2

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.14.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 428cd3c0b197cf857671353d8c85833193921af9fafcc169a1f29c7185833d50
MD5 dddfd1effddd4b73120bfa0f31a27f30
BLAKE2b-256 2ad680e808ae7963cdfe579eea7a22de4e606438907984572927f0b7057cb424

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page