Skip to main content

NumPy: array processing for numbers, strings, records, and objects.

Project description

NumPy is a general-purpose array-processing package designed to efficiently manipulate large multi-dimensional arrays of arbitrary records without sacrificing too much speed for small multi-dimensional arrays. NumPy is built on the Numeric code base and adds features introduced by numarray as well as an extended C-API and the ability to create arrays of arbitrary type which also makes NumPy suitable for interfacing with general-purpose data-base applications.

There are also basic facilities for discrete fourier transform, basic linear algebra and random number generation.

All numpy wheels distributed from pypi are BSD licensed.

Windows wheels are linked against the ATLAS BLAS / LAPACK library, restricted to SSE2 instructions, so may not give optimal linear algebra performance for your machine. See http://docs.scipy.org/doc/numpy/user/install.html for alternatives.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.14.1.zip (4.9 MB view details)

Uploaded Source

Built Distributions

numpy-1.14.1-cp36-none-win_amd64.whl (13.4 MB view details)

Uploaded CPython 3.6 Windows x86-64

numpy-1.14.1-cp36-none-win32.whl (9.8 MB view details)

Uploaded CPython 3.6 Windows x86

numpy-1.14.1-cp36-cp36m-manylinux1_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.6m

numpy-1.14.1-cp36-cp36m-manylinux1_i686.whl (8.7 MB view details)

Uploaded CPython 3.6m

numpy-1.14.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.14.1-cp35-none-win_amd64.whl (13.4 MB view details)

Uploaded CPython 3.5 Windows x86-64

numpy-1.14.1-cp35-none-win32.whl (9.8 MB view details)

Uploaded CPython 3.5 Windows x86

numpy-1.14.1-cp35-cp35m-manylinux1_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.5m

numpy-1.14.1-cp35-cp35m-manylinux1_i686.whl (8.7 MB view details)

Uploaded CPython 3.5m

numpy-1.14.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.14.1-cp34-none-win_amd64.whl (13.3 MB view details)

Uploaded CPython 3.4 Windows x86-64

numpy-1.14.1-cp34-none-win32.whl (9.8 MB view details)

Uploaded CPython 3.4 Windows x86

numpy-1.14.1-cp34-cp34m-manylinux1_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.4m

numpy-1.14.1-cp34-cp34m-manylinux1_i686.whl (8.7 MB view details)

Uploaded CPython 3.4m

numpy-1.14.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.14.1-cp27-none-win_amd64.whl (13.3 MB view details)

Uploaded CPython 2.7 Windows x86-64

numpy-1.14.1-cp27-none-win32.whl (9.8 MB view details)

Uploaded CPython 2.7 Windows x86

numpy-1.14.1-cp27-cp27mu-manylinux1_x86_64.whl (12.1 MB view details)

Uploaded CPython 2.7mu

numpy-1.14.1-cp27-cp27mu-manylinux1_i686.whl (8.7 MB view details)

Uploaded CPython 2.7mu

numpy-1.14.1-cp27-cp27m-manylinux1_x86_64.whl (12.1 MB view details)

Uploaded CPython 2.7m

numpy-1.14.1-cp27-cp27m-manylinux1_i686.whl (8.7 MB view details)

Uploaded CPython 2.7m

numpy-1.14.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.7 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file numpy-1.14.1.zip.

File metadata

  • Download URL: numpy-1.14.1.zip
  • Upload date:
  • Size: 4.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numpy-1.14.1.zip
Algorithm Hash digest
SHA256 fa0944650d5d3fb95869eaacd8eedbd2d83610c85e271bd9d3495ffa9bc4dc9c
MD5 b8324ef90ac9064cd0eac46b8b388674
BLAKE2b-256 a39974aa456fc740a7e8f733af4e8302d8e61e123367ec660cd89c53a3cd4d70

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.1-cp36-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.14.1-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 c8000a6cbc5140629be8c038c9c9cdb3a1c85ff90bd4180ec99f0f0c73050b5e
MD5 299c92352d2c08baa6a8142971b39295
BLAKE2b-256 719c28ac2551a375fef43fe8c1dc49ef5120e6a399256ce9fef123d52457ba13

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.1-cp36-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.14.1-cp36-none-win32.whl
Algorithm Hash digest
SHA256 a3d5dd437112292c707e54f47141be2f1100221242f07eda7bd8477f3ddc2252
MD5 a5803be2b83c1ec5f36ed9f58a0f848c
BLAKE2b-256 f6bdbf9421aa9377a6a0547d645a2b91319b1abfdf0633b977f66614875b88d9

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.14.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e8522cad377cc2ef20fe13aae742cc265172910c98e8a0d6014b1a8d564019e2
MD5 dd2321ea4590ec05d825d8c9a64fd64b
BLAKE2b-256 de7d348c5d8d44443656e76285aa97b828b6dbd9c10e5b9c0f7f98eff0ff70e4

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.1-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.14.1-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 81b9d8f6450e752bd82e7d9618fa053df8db1725747880e76fb09710b57f78d0
MD5 2b3d5774779e808cef193872dd4f6dbe
BLAKE2b-256 93bcb1cf507db98ee7a21bcbb2a89f8be25690bc279cebe6f9143c17a49f0c08

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.14.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 a8bc80f69570e11967763636db9b24c1e3e3689881d10ae793cec74cf7a627b6
MD5 8819860639f492ddf6045a95227624d0
BLAKE2b-256 d8d30b570dcf12e93d9ff65b05ccad17925771b060e90c06cdc2bf79bc259634

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.1-cp35-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.14.1-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 6b1011ffc87d7e2b1b7bcc6dc21bdf177163658746ef778dcd21bf0516b9126c
MD5 13b79737d10e857ee808a1dfdd2ff01e
BLAKE2b-256 28bdf0ae2f29021976c94a56990264b9ce38c2a021da0449fba8aade8f6209f2

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.1-cp35-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.14.1-cp35-none-win32.whl
Algorithm Hash digest
SHA256 e5ade7a69dccbd99c4fdbb95b6d091d941e62ffa588b0ed8fb0a2854118fef3f
MD5 e94355704fe2f6b3d1bcf6c8f6189df4
BLAKE2b-256 8e1222cded1311ac12946c4ac51257000427269c115fbf544446548022d154a3

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.14.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4e2fc841c8c642f7fd44591ef856ca409cedba6aea27928df34004c533839eee
MD5 12f2c45cc7501dc5a5e670042300f1e6
BLAKE2b-256 9023bd375a3ff44b956c00c62deff190d1ef4909c438bd507d60c8ede16ea8d2

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.1-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.14.1-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 12cf4b27039b88e407ad66894d99a957ef60fea0eeb442026af325add2ab264d
MD5 d897ae36d1487a101714deeb8782b7c5
BLAKE2b-256 8ca784f5a294862b4c263440edc293e71ebc4aeeb538ca7fbd90c80edb4b7316

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.14.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 a1f5173df8190ef9c6235d260d70ca70c6fb029683ceb66e244c5cc6e335947a
MD5 196639515a2084dc5b4b86a5ea0247ce
BLAKE2b-256 1bebdcac6217b27a778af9d1528c25f72654e1eca76f6a4d8e8fb77f689c207b

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.1-cp34-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.14.1-cp34-none-win_amd64.whl
Algorithm Hash digest
SHA256 9501c9ccd081977ca5579a3ec4009d6baff6bacb04bf07214aade3324734195a
MD5 b261be176aa57dce8a64f4fac169c74b
BLAKE2b-256 a085e00aae013511e9177157a68fb117c29da4ea80bcba381eb3436aa53db2a7

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.1-cp34-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.14.1-cp34-none-win32.whl
Algorithm Hash digest
SHA256 377def0873bbb1fbdedb14b3275b10a29b1b55619a3f7f775c4e7f9ce2461b9c
MD5 5b7fc9eb18463356ed8d018a3b486d53
BLAKE2b-256 6f8203cba2c3dd409e11a5eeaee09a8bae5917e4209cd93317ba74bc65dfe250

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.1-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.14.1-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 788e1757f8e409cd805a7cd82993cd9252fa19e334758a4c6eb5a8b334abb084
MD5 94cdf22837fdec46d03709fe0338ee09
BLAKE2b-256 1d38eb079c62298ec081de61074df837d4f4009c04fdc5d9b6369703ffc2a907

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.1-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.14.1-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 3d7ddd5bdfb12ec9668edf1aa49a4a3eddb0db4661b57ea431477eb9a2468894
MD5 655f4c67598dfe583fce3075e0152b06
BLAKE2b-256 1b1f26d674a20c40a5e9ca8e9ac5f072a8b70fb8c5c5a3bff396a885cd4c6aad

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.14.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 49880b47d7272f902946dd995f346842c95fe275e2deb3082ef0495f0c718a69
MD5 bb051505823a3f990ea22750a08cd40b
BLAKE2b-256 ea6f1c6c708c2832d39b5c3314ca97359b65a743e8bfaddc44de992a034379a2

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.1-cp27-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.14.1-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 89b9419019c47ec87cf4cfca77d85da4611cc0be636ec87b5290346490b98450
MD5 c7ee8517a1a52b90f08651c1f17b6e39
BLAKE2b-256 3b98e5594863d96cf79bb89bb4f49191403136c08b8353c3e3ebcb17cc6554e3

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.1-cp27-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.14.1-cp27-none-win32.whl
Algorithm Hash digest
SHA256 6b8c2daacbbffc83b4a2ba83a61aa3ce60c66340b07b962bd27b6c6bb175bee1
MD5 dbae0fec3c033b42695d9df9636ba9a5
BLAKE2b-256 607b9eb77633b3204f341e76c25dc690e17371e7959bada09c6fcdfc7353f75e

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.1-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.14.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2da8dff91d489fea3e20155d41f4cd680de7d01d9a89fdd0ebb1bee6e72d3800
MD5 0c2c6637c5c8ca639e1b7b3fa4ac64cc
BLAKE2b-256 625a6ba7ea4f097343021efd721200126969c603295b1b76c5469795e2f9ea38

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.1-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.14.1-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 b803306c4c201e7dcda0ce1b9a9c87f61a7c7ce43de2c60c8e56147b76849a1a
MD5 f9f6ada0f110230569cea9d8d2f5416a
BLAKE2b-256 112b79f8b827ee0bcffe48df3363c1ae9afffd1ea4ee42fb1472da58c31e3aa7

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.1-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.14.1-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7d4c549e41507db4f04ec7cfab5597de8acf7871b16c9cf64cebcb9d39031ca6
MD5 61473860888d024caa1261274620352e
BLAKE2b-256 2702a6f995c7d75c08fc4250315f854cc7b5a866aa23e950734f565cb12c433d

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.1-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.14.1-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 9b762e78739b6e021124adbea07611682db99cd3fca7f3c3a8b98b8f74ea5699
MD5 94189ecffbc1032df54f570bb6ff490d
BLAKE2b-256 ab33647d28e31663eb4a977ded3109904c7d25cb2826bbd9e3a06a66e7240cbb

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.14.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.14.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 e2335d56d2fd9fc4e3a3f2d3148aafec4962682375f429f05c45a64dacf19436
MD5 8a56c4b06e859ccad60a85d3486b214a
BLAKE2b-256 40919b5c5a058b5e8e57ac73ae4873db8065f198eec3332508d1bc490b8f74c4

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page