Skip to main content

NumPy: array processing for numbers, strings, records, and objects.

Project description

NumPy is a general-purpose array-processing package designed to efficiently manipulate large multi-dimensional arrays of arbitrary records without sacrificing too much speed for small multi-dimensional arrays. NumPy is built on the Numeric code base and adds features introduced by numarray as well as an extended C-API and the ability to create arrays of arbitrary type which also makes NumPy suitable for interfacing with general-purpose data-base applications.

There are also basic facilities for discrete fourier transform, basic linear algebra and random number generation.

All numpy wheels distributed from pypi are BSD licensed.

Windows wheels are linked against the ATLAS BLAS / LAPACK library, restricted to SSE2 instructions, so may not give optimal linear algebra performance for your machine. See http://docs.scipy.org/doc/numpy/user/install.html for alternatives.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.14.4.zip (4.9 MB view details)

Uploaded Source

Built Distributions

numpy-1.14.4-cp36-none-win_amd64.whl (13.4 MB view details)

Uploaded CPython 3.6 Windows x86-64

numpy-1.14.4-cp36-none-win32.whl (9.8 MB view details)

Uploaded CPython 3.6 Windows x86

numpy-1.14.4-cp36-cp36m-manylinux1_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.6m

numpy-1.14.4-cp36-cp36m-manylinux1_i686.whl (8.7 MB view details)

Uploaded CPython 3.6m

numpy-1.14.4-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.14.4-cp35-none-win_amd64.whl (13.4 MB view details)

Uploaded CPython 3.5 Windows x86-64

numpy-1.14.4-cp35-none-win32.whl (9.8 MB view details)

Uploaded CPython 3.5 Windows x86

numpy-1.14.4-cp35-cp35m-manylinux1_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.5m

numpy-1.14.4-cp35-cp35m-manylinux1_i686.whl (8.7 MB view details)

Uploaded CPython 3.5m

numpy-1.14.4-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.14.4-cp34-none-win_amd64.whl (13.3 MB view details)

Uploaded CPython 3.4 Windows x86-64

numpy-1.14.4-cp34-none-win32.whl (9.8 MB view details)

Uploaded CPython 3.4 Windows x86

numpy-1.14.4-cp34-cp34m-manylinux1_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.4m

numpy-1.14.4-cp34-cp34m-manylinux1_i686.whl (8.7 MB view details)

Uploaded CPython 3.4m

numpy-1.14.4-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.14.4-cp27-none-win_amd64.whl (13.3 MB view details)

Uploaded CPython 2.7 Windows x86-64

numpy-1.14.4-cp27-none-win32.whl (9.8 MB view details)

Uploaded CPython 2.7 Windows x86

numpy-1.14.4-cp27-cp27mu-manylinux1_x86_64.whl (12.1 MB view details)

Uploaded CPython 2.7mu

numpy-1.14.4-cp27-cp27mu-manylinux1_i686.whl (8.7 MB view details)

Uploaded CPython 2.7mu

numpy-1.14.4-cp27-cp27m-manylinux1_x86_64.whl (12.1 MB view details)

Uploaded CPython 2.7m

numpy-1.14.4-cp27-cp27m-manylinux1_i686.whl (8.7 MB view details)

Uploaded CPython 2.7m

numpy-1.14.4-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.7 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file numpy-1.14.4.zip.

File metadata

  • Download URL: numpy-1.14.4.zip
  • Upload date:
  • Size: 4.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numpy-1.14.4.zip
Algorithm Hash digest
SHA256 2185a0f31ecaa0792264fa968c8e0ba6d96acf144b26e2e1d1cd5b77fc11a691
MD5 a8a23723342a561e579757553e9db73a
BLAKE2b-256 94b809db804ddf3bb7b50767544ec8e559695b152cedd64830040a0f31d6aeda

See more details on using hashes here.

File details

Details for the file numpy-1.14.4-cp36-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.14.4-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 9e6694912f13afd8b1e15aa8002e9c951a377c94080c5442de154d743a69b3ff
MD5 f8ec9c6167f2b0d08066ec78c3a01a4c
BLAKE2b-256 2106a11c4b2e4f90c4f53c39b548a3f16eb644729048cf705ed71a7672d87338

See more details on using hashes here.

File details

Details for the file numpy-1.14.4-cp36-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.14.4-cp36-none-win32.whl
Algorithm Hash digest
SHA256 d9ceb6c680ffbe55ef6cf9d93558e0ddb72d616b885d77c536920f3da2112703
MD5 ec9af9e19aac597e1a245ada9c333e2d
BLAKE2b-256 6c492bcf9d0484b33a6d7c5312121344a190d4a3d5f7826fcb3480cb62109073

See more details on using hashes here.

File details

Details for the file numpy-1.14.4-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.14.4-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f29a9c5607b0fded7a9f0871dbd06918a88cb0a465acfac5c67f92d1a4115d48
MD5 9c56d525cf6da2b8489e723d72ccc9a2
BLAKE2b-256 4b3d9c0a34ad8544abef864714840fb8954d630b04433f00881bc8fde7b2ab27

See more details on using hashes here.

File details

Details for the file numpy-1.14.4-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.14.4-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 e6c24c83ca64d447a18f041bd53cbe96c74405f59939b6006755105583b62629
MD5 135139bd2ec26e2b52bdd2d36be94c44
BLAKE2b-256 26ae8d550796cea2abec8152260b822d6b6c198ab81c6a486d0b50199356a420

See more details on using hashes here.

File details

Details for the file numpy-1.14.4-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.14.4-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 b037993dfb1175a68b6a2bfc6b1c2af57c09031d1332fea3ab25a539b43bd475
MD5 79233bdad30a65beb515c86a4612102d
BLAKE2b-256 06e7a1d89e97bbf6f8d1329cb495f851637b4578ea18e50eb6c597c7e6fd3468

See more details on using hashes here.

File details

Details for the file numpy-1.14.4-cp35-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.14.4-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 f6a4ae8d5e1126bf4d8520a9aa6a82d067ab3ce7d21f58f0d50ead2aebda7bfb
MD5 cf0c074d9243f8bf6eff8291ac12a003
BLAKE2b-256 1b957614cab65e16cf8055f55c038e287f2fed0b4c8d4be5bec89107734d815b

See more details on using hashes here.

File details

Details for the file numpy-1.14.4-cp35-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.14.4-cp35-none-win32.whl
Algorithm Hash digest
SHA256 eb6ccd2b47d43199ec9a7c39bd45e399ccb5756e7367aaf92ced3c46fa67b16b
MD5 7a5d4c66c7f6e430eb73b5683d99cacb
BLAKE2b-256 82f0590741d49af09253a5fb2ba0697a93df5078376607ae332f74c1d2e86e14

See more details on using hashes here.

File details

Details for the file numpy-1.14.4-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.14.4-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f54114395aabe13c7c4e4b425145cfd998eaf0781e87a9e9b2e77426f1ec8a82
MD5 d22105d03a15c9fd6ec4ecffa4b1f764
BLAKE2b-256 f59fc538ce62503e2b3f9d7a87e9064d580242f1d1600c002b4cab36cc357a69

See more details on using hashes here.

File details

Details for the file numpy-1.14.4-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.14.4-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 0d6d7bbcb54babaf39fe658bcc6f79641c9c62813c6d477802d783c7ba1a437c
MD5 7c5f7ff2cccb13c22b87f768ac1cc6e2
BLAKE2b-256 3fbec1abaf9dc568ef8336aff86aef7feb70f41f0fa8aae33d84d380df9d316b

See more details on using hashes here.

File details

Details for the file numpy-1.14.4-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.14.4-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 be4664fe153ca6dbd961fb06f99b9b88b114ab44649376253b540aafbf42e469
MD5 a05e215d9443c838a531119eb5c1eadc
BLAKE2b-256 d3adcb8dba00dc689b842f221c4eebb13a0af594deb56ed4f6934466f9bb8115

See more details on using hashes here.

File details

Details for the file numpy-1.14.4-cp34-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.14.4-cp34-none-win_amd64.whl
Algorithm Hash digest
SHA256 419dfe9bcb09d2e87ecf296c5ebf2b047c568419c89588acc9dbce6d2d761bea
MD5 aab911c898c58073b47a2d1f28228a41
BLAKE2b-256 5bea078aab4662bc17c20ea8652bc751d5a1fcd55b3b5a14cd5cd6452a09dae9

See more details on using hashes here.

File details

Details for the file numpy-1.14.4-cp34-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.14.4-cp34-none-win32.whl
Algorithm Hash digest
SHA256 b2b2741da83b1e016094b2fef2cadec1abd3ccd3d97428634ec6afe1dcb699b8
MD5 e53dd3796a0cdec43037b18c5c54d1a3
BLAKE2b-256 2078e1f9c731c5a21d6edaa04d83f0ca83cfa4ea1b41b1645c878cfe33bc34af

See more details on using hashes here.

File details

Details for the file numpy-1.14.4-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.14.4-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c5065b3aec37cd1b7ec2882b3ab86e200d15219a0fb96fea65a16c6b59d3c0f0
MD5 6335ee571648d8db7561a619328b69c7
BLAKE2b-256 4de120b4b68f6d182099bb97d6b7e68fdc8c9a54f2b700c514aa718e5ba529dd

See more details on using hashes here.

File details

Details for the file numpy-1.14.4-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.14.4-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 ef7a07f6a77658a1038e6d22e53458129c04a95b5770f080b5741320d9491e32
MD5 33a177cf9d60fa26d30dc80b7163a374
BLAKE2b-256 11bc600a0dbcf241f0b968ba623f5286d911da3485fd19ae4e07db68513069e9

See more details on using hashes here.

File details

Details for the file numpy-1.14.4-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.14.4-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 a1b4a80d59658fc438716095deb1971c6315482b461d976f760d920b6509fd5d
MD5 fbe6a5a9a0de9f85bcb729702a132769
BLAKE2b-256 68f4b8da05c7618af913239999f8997407e503878c12e30c2d3db13d3847fbf0

See more details on using hashes here.

File details

Details for the file numpy-1.14.4-cp27-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.14.4-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 7fbceea93b6877419d84516705a265dfc4626939a29107a4d04db599bf6cdf8d
MD5 ff04e3451a90fdf9ae8b6db8b3e8c2d6
BLAKE2b-256 b9390e057d5b78e7a756fc61fe87611295defbf0e55334918aaabf49b1847311

See more details on using hashes here.

File details

Details for the file numpy-1.14.4-cp27-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.14.4-cp27-none-win32.whl
Algorithm Hash digest
SHA256 8d87ac65d830ee3087e6bd02b0201e68aed4c715ff2e227e3640e7ded38d8a2e
MD5 e9d4ab30ffee0f57da2292ed2c42bdcb
BLAKE2b-256 fe611fb8698473d423c3e24fc3ad39ccacae4193ca4253a46096ac0a28e26d07

See more details on using hashes here.

File details

Details for the file numpy-1.14.4-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.14.4-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1dc831683f18c11e6b5b7ad3610b9f00417b8d3fc63a8adcdbe68844d9dd6f62
MD5 e6844d6134fed4f79b52cd89d66edb76
BLAKE2b-256 057ddf63c9d42eb4485e79b61a054ba5db7c8efb830d29504d4fa849cf80eb01

See more details on using hashes here.

File details

Details for the file numpy-1.14.4-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.14.4-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 3ed68b8ef0635e12b06c216d3ed33572d9c15b05a5a5d6ab870d073190c3eef3
MD5 b5e17dcc08205a278ffd33c6baeb7562
BLAKE2b-256 891b55fc61696414ec616da85c2f6af50d5ce849c0e825fdd2499f0dcb32e169

See more details on using hashes here.

File details

Details for the file numpy-1.14.4-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.14.4-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6105d909e56c4f3f173a7294154eee5da80853104e9c3ebcf9e523fb3bb6cf70
MD5 bbf56f4de32bb2c4215e01ea4f1b9445
BLAKE2b-256 64dca848d31372a1d53850bdf9da89adb234136355f6ee4c542226aea6edbb6e

See more details on using hashes here.

File details

Details for the file numpy-1.14.4-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.14.4-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 939376b3b8d9bd42529a2713534c9bae7f11c774614d4d2f7f2a38cae96101f1
MD5 a08af11af72e8393d61f1724e2a42258
BLAKE2b-256 5f3bcbd1110ed0086f6f42a983e72366dc8afe55774c3f28c450f290e228cfce

See more details on using hashes here.

File details

Details for the file numpy-1.14.4-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.14.4-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 c0c4bdcb771a147cb14286e3aeb72267e1664652d4150b0df255f0c210166a62
MD5 118e010f76fba91f05111e775d08b9d2
BLAKE2b-256 57a14ed4dbe645f914f91002b0e8be1ba1a53567136d97225aee7ddd4f09a6f6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page