Skip to main content

NumPy: array processing for numbers, strings, records, and objects.

Project description

NumPy is a general-purpose array-processing package designed to efficiently manipulate large multi-dimensional arrays of arbitrary records without sacrificing too much speed for small multi-dimensional arrays. NumPy is built on the Numeric code base and adds features introduced by numarray as well as an extended C-API and the ability to create arrays of arbitrary type which also makes NumPy suitable for interfacing with general-purpose data-base applications.

There are also basic facilities for discrete fourier transform, basic linear algebra and random number generation.

All numpy wheels distributed from pypi are BSD licensed.

Windows wheels are linked against the ATLAS BLAS / LAPACK library, restricted to SSE2 instructions, so may not give optimal linear algebra performance for your machine. See http://docs.scipy.org/doc/numpy/user/install.html for alternatives.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.14.5.zip (4.9 MB view details)

Uploaded Source

Built Distributions

numpy-1.14.5-cp37-none-win_amd64.whl (13.4 MB view details)

Uploaded CPython 3.7 Windows x86-64

numpy-1.14.5-cp37-none-win32.whl (9.8 MB view details)

Uploaded CPython 3.7 Windows x86

numpy-1.14.5-cp37-cp37m-manylinux1_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.7m

numpy-1.14.5-cp37-cp37m-manylinux1_i686.whl (8.7 MB view details)

Uploaded CPython 3.7m

numpy-1.14.5-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.14.5-cp36-none-win_amd64.whl (13.4 MB view details)

Uploaded CPython 3.6 Windows x86-64

numpy-1.14.5-cp36-none-win32.whl (9.8 MB view details)

Uploaded CPython 3.6 Windows x86

numpy-1.14.5-cp36-cp36m-manylinux1_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.6m

numpy-1.14.5-cp36-cp36m-manylinux1_i686.whl (8.7 MB view details)

Uploaded CPython 3.6m

numpy-1.14.5-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.14.5-cp35-none-win_amd64.whl (13.4 MB view details)

Uploaded CPython 3.5 Windows x86-64

numpy-1.14.5-cp35-none-win32.whl (9.8 MB view details)

Uploaded CPython 3.5 Windows x86

numpy-1.14.5-cp35-cp35m-manylinux1_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.5m

numpy-1.14.5-cp35-cp35m-manylinux1_i686.whl (8.7 MB view details)

Uploaded CPython 3.5m

numpy-1.14.5-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.14.5-cp34-none-win_amd64.whl (13.3 MB view details)

Uploaded CPython 3.4 Windows x86-64

numpy-1.14.5-cp34-none-win32.whl (9.8 MB view details)

Uploaded CPython 3.4 Windows x86

numpy-1.14.5-cp34-cp34m-manylinux1_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.4m

numpy-1.14.5-cp34-cp34m-manylinux1_i686.whl (8.7 MB view details)

Uploaded CPython 3.4m

numpy-1.14.5-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.14.5-cp27-none-win_amd64.whl (13.3 MB view details)

Uploaded CPython 2.7 Windows x86-64

numpy-1.14.5-cp27-none-win32.whl (9.8 MB view details)

Uploaded CPython 2.7 Windows x86

numpy-1.14.5-cp27-cp27mu-manylinux1_x86_64.whl (12.1 MB view details)

Uploaded CPython 2.7mu

numpy-1.14.5-cp27-cp27mu-manylinux1_i686.whl (8.7 MB view details)

Uploaded CPython 2.7mu

numpy-1.14.5-cp27-cp27m-manylinux1_x86_64.whl (12.1 MB view details)

Uploaded CPython 2.7m

numpy-1.14.5-cp27-cp27m-manylinux1_i686.whl (8.7 MB view details)

Uploaded CPython 2.7m

numpy-1.14.5-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.7 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file numpy-1.14.5.zip.

File metadata

  • Download URL: numpy-1.14.5.zip
  • Upload date:
  • Size: 4.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numpy-1.14.5.zip
Algorithm Hash digest
SHA256 a4a433b3a264dbc9aa9c7c241e87c0358a503ea6394f8737df1683c7c9a102ac
MD5 02d940a6931703de2c41fa5590ac7e98
BLAKE2b-256 d56ef00492653d0fdf6497a181a1c1d46bbea5a2383e7faf4c8ca6d6f3d2581d

See more details on using hashes here.

File details

Details for the file numpy-1.14.5-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.14.5-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 9b705f18b26fb551366ab6347ba9941b62272bf71c6bbcadcd8af94d10535241
MD5 bd2e49132f40b7c60f006257d1df93e4
BLAKE2b-256 9480c49b01d8632f58aef25fbe9a05be56339b7bb94b1eefd4f5d8c087d002b5

See more details on using hashes here.

File details

Details for the file numpy-1.14.5-cp37-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.14.5-cp37-none-win32.whl
Algorithm Hash digest
SHA256 4130e5ae16c656b7de654dc5e595cfeb85d3a4b0bb0734d19c0dce6dc7ee0e07
MD5 9848f1c3a3ca43f76f1cfd782628b6f4
BLAKE2b-256 6c28010d2433a02bdb7a2d20638953cdb8c6b0324b9c5c431e444a5c5ad40dd7

See more details on using hashes here.

File details

Details for the file numpy-1.14.5-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.14.5-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5ae3564cb630e155a650f4f9c054589848e97836bebae5637240a0d8099f817b
MD5 be41f34882e19f307c4d1864e3ebda77
BLAKE2b-256 3fe77f24ef402a5766c677683e313c5595137d754cb9eb1c99627803280e79d5

See more details on using hashes here.

File details

Details for the file numpy-1.14.5-cp37-cp37m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.14.5-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 e1d18421a7e2ad4a655b76e65d549d4159f8874c18a417464c1d439ee7ccc7cd
MD5 561251f3efd35b6c6d5fa0a893a36c8e
BLAKE2b-256 3179911546d27098eb36e39ec6adb7791e92e30cdf337c42fbfc5022daf91551

See more details on using hashes here.

File details

Details for the file numpy-1.14.5-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.14.5-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 91fdd510743ae4df862dbd51a4354519dd9fb8941347526cd9c2194b792b3da9
MD5 f7bfa5fe49e27f886364c382f9bf65d3
BLAKE2b-256 a031f01ac16f0e8adbb94cd4e3de4920b49a470cf4ca7d452eefd960d4b0248f

See more details on using hashes here.

File details

Details for the file numpy-1.14.5-cp36-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.14.5-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 381ad13c30cd1d0b2f3da8a0c1a4aa697487e8bb0e9e0cbeb7439776bcb645f8
MD5 01b5bd7897e1306660c7ea6a30391cc4
BLAKE2b-256 0db70c804e0bcba6505f8392d042d5e333a5e06f308e019517111fbc7767a0bc

See more details on using hashes here.

File details

Details for the file numpy-1.14.5-cp36-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.14.5-cp36-none-win32.whl
Algorithm Hash digest
SHA256 97fa8f1dceffab782069b291e38c4c2227f255cdac5f1e3346666931df87373e
MD5 c0306cbad68f8084e977121ba104b634
BLAKE2b-256 e713b4217ea9d001ddd8a7235aeb876754065330099c36f7303f7ee0cccb4c3d

See more details on using hashes here.

File details

Details for the file numpy-1.14.5-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.14.5-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8622db292b766719810e0cb0f62ef6141e15fe32b04e4eb2959888319e59336b
MD5 c5596c3d232345d0f0176cd02e6efe92
BLAKE2b-256 681e116ad560de97694e2d0c1843a7a0075cc9f49e922454d32f49a80eb6f1f2

See more details on using hashes here.

File details

Details for the file numpy-1.14.5-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.14.5-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 9d69967673ab7b028c2df09cae05ba56bf4e39e3cb04ebe452b6035c3b49848e
MD5 5a0682a984fcf6f87a9f10760d896b70
BLAKE2b-256 f7b2ec7d0d9e9ae55f59b6c2d239904b48ea389337eadd6dd5cd34f0dbe4c9da

See more details on using hashes here.

File details

Details for the file numpy-1.14.5-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.14.5-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 8b8dcfcd630f1981f0f1e3846fae883376762a0c1b472baa35b145b911683b7b
MD5 350120bd20a0a45857b4c39e901af41b
BLAKE2b-256 f6cdb2c50b5190b66c711c23ef23c41d450297eb5a54d2033f8dcb3b8b13ac85

See more details on using hashes here.

File details

Details for the file numpy-1.14.5-cp35-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.14.5-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 51c5dcb51cf88b34b7d04c15f600b07c6ccbb73a089a38af2ab83c02862318da
MD5 c5c86e11b5071c0ca0bb11f6a84f20e6
BLAKE2b-256 f37194628784c3f07d4bc0dd38f8753e3f751d66cfd5a6823591179608c27f09

See more details on using hashes here.

File details

Details for the file numpy-1.14.5-cp35-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.14.5-cp35-none-win32.whl
Algorithm Hash digest
SHA256 2d6481c6bdab1c75affc0fc71eb1bd4b3ecef620d06f2f60c3f00521d54be04f
MD5 a542ea0d9047df0da8ab69e90d60dbdc
BLAKE2b-256 562c3dca9665f019efbe735814564bcf4b3b71618cea5f0ccec8847361e61a24

See more details on using hashes here.

File details

Details for the file numpy-1.14.5-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.14.5-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 baadc5f770917ada556afb7651a68176559f4dca5f4b2d0947cd15b9fb84fb51
MD5 395c0058b7ec0ae0cad1e052362e9aeb
BLAKE2b-256 4317cd9fa14492dbef2aaf22622db79dba087c10f125473e730cda2f2019c40b

See more details on using hashes here.

File details

Details for the file numpy-1.14.5-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.14.5-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 2df854df882d322d5c23087a4959e145b953dfff2abe1774fec4f639ac2f3160
MD5 129848206c41b68071fe9cb469a66846
BLAKE2b-256 cecff39cfcecb20c3a11ee31806847b3c7fedcd3729ae7a94026ae0665a52f0b

See more details on using hashes here.

File details

Details for the file numpy-1.14.5-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.14.5-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 d696a8c87315a83983fc59dd27efe034292b9e8ad667aeae51a68b4be14690d9
MD5 90caeba061eec5dbebadad5c8bad3a0c
BLAKE2b-256 509d769515cb321d3ab39af31ec14ce26595f929f02078e7d0a54c0410992e5c

See more details on using hashes here.

File details

Details for the file numpy-1.14.5-cp34-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.14.5-cp34-none-win_amd64.whl
Algorithm Hash digest
SHA256 4d278c2261be6423c5e63d8f0ceb1b0c6db3ff83f2906f4b860db6ae99ca1bb5
MD5 193365c9f1bb2086b47afe9c797ff415
BLAKE2b-256 d6c4983beea4c626132549b41654b5812eeb11b9f0ef0f4ef5e1202bf0e58efa

See more details on using hashes here.

File details

Details for the file numpy-1.14.5-cp34-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.14.5-cp34-none-win32.whl
Algorithm Hash digest
SHA256 9e1f53afae865cc32459ad211493cf9e2a3651a7295b7a38654ef3d123808996
MD5 5263ec59028d508992c15263993698d0
BLAKE2b-256 7a3c5005320dcdb3afaab599f6ea40f4d5b7ed9e19dc9282cd3f533bc4207055

See more details on using hashes here.

File details

Details for the file numpy-1.14.5-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.14.5-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 07379fe0b450f6fd6e5934a9bc015025bb4ce1c8fbed3ca8bef29328b1bc9570
MD5 78c67b4b4f8f3f8bd9c2f897f9d40f60
BLAKE2b-256 6a6924b5d5c2466df479ed42f970a61eb570f57d8a20bd79e44ec39ee37ded12

See more details on using hashes here.

File details

Details for the file numpy-1.14.5-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.14.5-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 c725d11990a9243e6ceffe0ab25a07c46c1cc2c5dc55e305717b5afe856c9608
MD5 ae15c8254a4a3ebfc45894617ce030a2
BLAKE2b-256 ffcac591a5c84ec7db7628bc76db4d3d30b594bc3fa39c4350eebc0c6b2d239d

See more details on using hashes here.

File details

Details for the file numpy-1.14.5-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.14.5-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 758d1091a501fd2d75034e55e7e98bfd1370dc089160845c242db1c760d944d9
MD5 0a77f36af749e5c3546c3d310f571256
BLAKE2b-256 d166f7bc6d90b4a025d6c6289e27f392d82ca127ac05291375e9082a0ed97f51

See more details on using hashes here.

File details

Details for the file numpy-1.14.5-cp27-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.14.5-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 385f1ce46e08676505b692bfde918c1e0b350963a15ef52d77691c2cf0f5dbf6
MD5 c0d5fc38ab45f19cbd12200ff4ea45dd
BLAKE2b-256 8ea0104512bc5a87b03689ce5b3d3778d60a0ebdc039b6084636158a1a839894

See more details on using hashes here.

File details

Details for the file numpy-1.14.5-cp27-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.14.5-cp27-none-win32.whl
Algorithm Hash digest
SHA256 6b82b81c6b3b70ed40bc6d0b71222ebfcd6b6c04a6e7945a936e514b9113d5a3
MD5 2d5609f384fccf9fe4e6172dd4fed3d0
BLAKE2b-256 e260e00686d7223ec811f0a5a1a41df9afa1833a0e3468daa252dc42a2b32211

See more details on using hashes here.

File details

Details for the file numpy-1.14.5-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.14.5-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5edf1acc827ed139086af95ce4449b7b664f57a8c29eb755411a634be280d9f2
MD5 6759e2f4bd57727f1ab9d6c9611b3f9d
BLAKE2b-256 6aa9c01a2d5f7b045f508c8cefef3b079fe8c413d05498ca0ae877cffa230564

See more details on using hashes here.

File details

Details for the file numpy-1.14.5-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.14.5-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 589336ba5199c8061239cf446ee2f2f1fcc0c68e8531ee1382b6fc0c66b2d388
MD5 397a64608b5809983ff07842ebe0d353
BLAKE2b-256 4d80cf23a7089d7783212abb0c4680e30d443a486a0966e5b827a17976b7651c

See more details on using hashes here.

File details

Details for the file numpy-1.14.5-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.14.5-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6c57f973218b776195d0356e556ec932698f3a563e2f640cfca7020086383f50
MD5 6315999b5142d22ce7bd9e74b1b4e3ab
BLAKE2b-256 8d2b940739da20f24af313d6a6342ce9b6b4331a942eb212de42899524ae0378

See more details on using hashes here.

File details

Details for the file numpy-1.14.5-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.14.5-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 085afac75bbc97a096744fcfc97a4b321c5a87220286811e85089ae04885acdd
MD5 de8f5c6c0e46eedf8d92c1a7ba3fccf7
BLAKE2b-256 48c933985d3bbdc5ff4ceda9117809698ab56bfc8dc0b9d636a7e5d6bba9e24d

See more details on using hashes here.

File details

Details for the file numpy-1.14.5-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.14.5-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 e1864a4e9f93ddb2dc6b62ccc2ec1f8250ff4ac0d3d7a15c8985dd4e1fbd6418
MD5 429afa5c8720016214a79779f774d3a4
BLAKE2b-256 b65e4b2c794fb57a42e285d6e0fae0e9163773c5a6a6a7e1794967fc5d2168f2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page