Skip to main content

NumPy: array processing for numbers, strings, records, and objects.

Project description

NumPy is a general-purpose array-processing package designed to efficiently manipulate large multi-dimensional arrays of arbitrary records without sacrificing too much speed for small multi-dimensional arrays. NumPy is built on the Numeric code base and adds features introduced by numarray as well as an extended C-API and the ability to create arrays of arbitrary type which also makes NumPy suitable for interfacing with general-purpose data-base applications.

There are also basic facilities for discrete fourier transform, basic linear algebra and random number generation.

All numpy wheels distributed from pypi are BSD licensed.

Windows wheels are linked against the ATLAS BLAS / LAPACK library, restricted to SSE2 instructions, so may not give optimal linear algebra performance for your machine. See http://docs.scipy.org/doc/numpy/user/install.html for alternatives.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.15.1.zip (4.5 MB view details)

Uploaded Source

Built Distributions

numpy-1.15.1-cp37-none-win_amd64.whl (13.5 MB view details)

Uploaded CPython 3.7 Windows x86-64

numpy-1.15.1-cp37-none-win32.whl (9.9 MB view details)

Uploaded CPython 3.7 Windows x86

numpy-1.15.1-cp37-cp37m-manylinux1_x86_64.whl (13.8 MB view details)

Uploaded CPython 3.7m

numpy-1.15.1-cp37-cp37m-manylinux1_i686.whl (10.2 MB view details)

Uploaded CPython 3.7m

numpy-1.15.1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (24.5 MB view details)

Uploaded CPython 3.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.15.1-cp36-none-win_amd64.whl (13.5 MB view details)

Uploaded CPython 3.6 Windows x86-64

numpy-1.15.1-cp36-none-win32.whl (9.9 MB view details)

Uploaded CPython 3.6 Windows x86

numpy-1.15.1-cp36-cp36m-manylinux1_x86_64.whl (13.9 MB view details)

Uploaded CPython 3.6m

numpy-1.15.1-cp36-cp36m-manylinux1_i686.whl (10.2 MB view details)

Uploaded CPython 3.6m

numpy-1.15.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (24.5 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.15.1-cp35-none-win_amd64.whl (13.5 MB view details)

Uploaded CPython 3.5 Windows x86-64

numpy-1.15.1-cp35-none-win32.whl (9.9 MB view details)

Uploaded CPython 3.5 Windows x86

numpy-1.15.1-cp35-cp35m-manylinux1_x86_64.whl (13.8 MB view details)

Uploaded CPython 3.5m

numpy-1.15.1-cp35-cp35m-manylinux1_i686.whl (10.1 MB view details)

Uploaded CPython 3.5m

numpy-1.15.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (24.4 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.15.1-cp34-none-win_amd64.whl (13.5 MB view details)

Uploaded CPython 3.4 Windows x86-64

numpy-1.15.1-cp34-none-win32.whl (9.9 MB view details)

Uploaded CPython 3.4 Windows x86

numpy-1.15.1-cp34-cp34m-manylinux1_x86_64.whl (13.8 MB view details)

Uploaded CPython 3.4m

numpy-1.15.1-cp34-cp34m-manylinux1_i686.whl (10.1 MB view details)

Uploaded CPython 3.4m

numpy-1.15.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (24.4 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.15.1-cp27-none-win_amd64.whl (13.5 MB view details)

Uploaded CPython 2.7 Windows x86-64

numpy-1.15.1-cp27-none-win32.whl (9.9 MB view details)

Uploaded CPython 2.7 Windows x86

numpy-1.15.1-cp27-cp27mu-manylinux1_x86_64.whl (13.8 MB view details)

Uploaded CPython 2.7mu

numpy-1.15.1-cp27-cp27mu-manylinux1_i686.whl (10.1 MB view details)

Uploaded CPython 2.7mu

numpy-1.15.1-cp27-cp27m-manylinux1_x86_64.whl (13.8 MB view details)

Uploaded CPython 2.7m

numpy-1.15.1-cp27-cp27m-manylinux1_i686.whl (10.1 MB view details)

Uploaded CPython 2.7m

numpy-1.15.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (24.5 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file numpy-1.15.1.zip.

File metadata

  • Download URL: numpy-1.15.1.zip
  • Upload date:
  • Size: 4.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.1.zip
Algorithm Hash digest
SHA256 7b9e37f194f8bcdca8e9e6af92e2cbad79e360542effc2dd6b98d63955d8d8a3
MD5 898004d5be091fde59ae353e3008fe9b
BLAKE2b-256 65ab4dfcc20234fae12ee40c714b98077d6e3a10652496bd1488fa4828529b22

See more details on using hashes here.

File details

Details for the file numpy-1.15.1-cp37-none-win_amd64.whl.

File metadata

  • Download URL: numpy-1.15.1-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 13.5 MB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.1-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 f2362d0ca3e16c37782c1054d7972b8ad2729169567e3f0f4e5dd3cdf85f188e
MD5 f476babe66c6104c00accbf0bcfafce5
BLAKE2b-256 90cafac7871a7c7d78beb78d7d9562b8d5bfce9ff316dc6c2a7ac34927895609

See more details on using hashes here.

File details

Details for the file numpy-1.15.1-cp37-none-win32.whl.

File metadata

  • Download URL: numpy-1.15.1-cp37-none-win32.whl
  • Upload date:
  • Size: 9.9 MB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.1-cp37-none-win32.whl
Algorithm Hash digest
SHA256 361370e9b7f5e44c41eee29f2bb5cb3b755abb4b038bce6d6cbe08db7ff9cb74
MD5 c05625370ff437b3e1a4f08cf194e3e4
BLAKE2b-256 2dd4ddfa53d27e2cdfef261b744df6e4b68134fc69b0d45ad8211e560178c852

See more details on using hashes here.

File details

Details for the file numpy-1.15.1-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.15.1-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 13.8 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 95b085b253080e5d09f7826f5e27dce067bae813a132023a77b739614a29de6e
MD5 e600bd09303c622ff4d16ed63fefb205
BLAKE2b-256 1a2e4e298c92b1fced64a4414ada9af3253a91083b92b131c2b10c057c507982

See more details on using hashes here.

File details

Details for the file numpy-1.15.1-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.15.1-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 10.2 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.1-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 24e4149c38489b51fc774b1e1faa9103e82f73344d7a00ba66f6845ab4769f3f
MD5 381bd5ea598b17333264b1cbc9f62fac
BLAKE2b-256 6e61283f1b12e1a481ba616fc87ed416ed8d6a243720fbe0a0402b70d1ffe38e

See more details on using hashes here.

File details

Details for the file numpy-1.15.1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.15.1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 98b86c62c08c2e5dc98a9c856d4a95329d11b1c6058cb9b5191d5ea6891acd09
MD5 3fdd39812b8fe172824d2cc52cb807c4
BLAKE2b-256 d4fd6c1c98862f78b1aacd8d81811900ddd5cbe34a6ed168e8f84e4df7cac30f

See more details on using hashes here.

File details

Details for the file numpy-1.15.1-cp36-none-win_amd64.whl.

File metadata

  • Download URL: numpy-1.15.1-cp36-none-win_amd64.whl
  • Upload date:
  • Size: 13.5 MB
  • Tags: CPython 3.6, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.1-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 c81a6afc1d2531a9ada50b58f8c36197f8418ef3d0611d4c1d7af93fdcda764f
MD5 013ea5fbb8a953c2112acaa591c675a8
BLAKE2b-256 fb7df8b97d97809f184d90faf320fa8e2e7eac994844c5e6c57adbed1283e9e9

See more details on using hashes here.

File details

Details for the file numpy-1.15.1-cp36-none-win32.whl.

File metadata

  • Download URL: numpy-1.15.1-cp36-none-win32.whl
  • Upload date:
  • Size: 9.9 MB
  • Tags: CPython 3.6, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.1-cp36-none-win32.whl
Algorithm Hash digest
SHA256 9473ad28375710ab18378e72b59422399b27e957e9339c413bf00793b4b12df0
MD5 04471e530164dd25c7a9c1309712cc64
BLAKE2b-256 39586095ee4cb19a896a6323cf2b7b8768e42f21804338871f2231a2cd41d833

See more details on using hashes here.

File details

Details for the file numpy-1.15.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.15.1-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 13.9 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 36e8dcd1813ca92ce7e4299120cee6c03adad33d89b54862c1b1a100443ac399
MD5 3cd21facc099e72ab56a957978207c8c
BLAKE2b-256 fe947049fed8373c52839c8cde619acaf2c9b83082b935e5aa8c0fa27a4a8bcc

See more details on using hashes here.

File details

Details for the file numpy-1.15.1-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.15.1-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 10.2 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.1-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 5ee7f3dbbdba0da75dec7e94bd7a2b10fe57a83e1b38e678200a6ad8e7b14fdc
MD5 d7d0c86acb89a86894811b8a792fba89
BLAKE2b-256 9579fbff0f79ddc9d1dfe81d282a572ceda0ea67a6e94e7228761b90d4343519

See more details on using hashes here.

File details

Details for the file numpy-1.15.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.15.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 e3660744cda0d94b90141cdd0db9308b958a372cfeee8d7188fdf5ad9108ea82
MD5 ce48f8b807c9ac8b7d00301584ab7976
BLAKE2b-256 a60a2defbdd9bd3a436ee0642bb8d8a66d16e523122d33384a04548dcfab23ba

See more details on using hashes here.

File details

Details for the file numpy-1.15.1-cp35-none-win_amd64.whl.

File metadata

  • Download URL: numpy-1.15.1-cp35-none-win_amd64.whl
  • Upload date:
  • Size: 13.5 MB
  • Tags: CPython 3.5, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.1-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 7a70f2b60d48828cba94a54a8776b61a9c2657a803d47f5785f8062e3a9c7c55
MD5 bfaac6c5f4e8ab65cd76b010ea5c5dfe
BLAKE2b-256 b7a7b99bcbd00fe4d757a940933451a9a795e502e18e4aba15cb09265196db47

See more details on using hashes here.

File details

Details for the file numpy-1.15.1-cp35-none-win32.whl.

File metadata

  • Download URL: numpy-1.15.1-cp35-none-win32.whl
  • Upload date:
  • Size: 9.9 MB
  • Tags: CPython 3.5, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.1-cp35-none-win32.whl
Algorithm Hash digest
SHA256 4287104c24e6a09b9b418761a1e7b1bbde65105f110690ca46a23600a3c606b8
MD5 910aab0be682f29a182239e4bd4631cf
BLAKE2b-256 1373a58d0ce1af2deaae887d87915910926a908767320f09c0ef81d491b5f555

See more details on using hashes here.

File details

Details for the file numpy-1.15.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.15.1-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 13.8 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 35db8d419345caa4eeaa65cd63f34a15208acd87530a30f0bc25fc84f55c8c80
MD5 e1ebc2bc6d0947159b33f208e844251a
BLAKE2b-256 0afaafc1dc818589c9fd36a53f78999f2b5bd88bd5b167eb7d87fb56b565c185

See more details on using hashes here.

File details

Details for the file numpy-1.15.1-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.15.1-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 10.1 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.1-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 378378973546ecc1dfaf9e24c160d683dd04df871ecd2dcc86ce658ca20f92c0
MD5 4afe4fd3ea108a967bd0b9425305b979
BLAKE2b-256 12f3c2b1c6e6fd4448b8fbec4c93490c0502e3704a5469865f420e8366e5aa90

See more details on using hashes here.

File details

Details for the file numpy-1.15.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.15.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 549f3e9778b148a47f4fb4682955ed88057eb627c9fe5467f33507c536deda9d
MD5 063f6a86f0713211b69050545e7c6c2c
BLAKE2b-256 8b5fa7765a144fd788135a5cad90bf4c144df3b6c3343a08fff4ff8f98217641

See more details on using hashes here.

File details

Details for the file numpy-1.15.1-cp34-none-win_amd64.whl.

File metadata

  • Download URL: numpy-1.15.1-cp34-none-win_amd64.whl
  • Upload date:
  • Size: 13.5 MB
  • Tags: CPython 3.4, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.1-cp34-none-win_amd64.whl
Algorithm Hash digest
SHA256 2156a06bd407918df4ac0122df6497a9c137432118f585e5b17d543e593d1587
MD5 5b9e984e562aac63b7549e456bd89dfe
BLAKE2b-256 65e7d97425ab187d75083a8d5327c7c6d314d4aa61523b4e28548a3b247da77c

See more details on using hashes here.

File details

Details for the file numpy-1.15.1-cp34-none-win32.whl.

File metadata

  • Download URL: numpy-1.15.1-cp34-none-win32.whl
  • Upload date:
  • Size: 9.9 MB
  • Tags: CPython 3.4, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.1-cp34-none-win32.whl
Algorithm Hash digest
SHA256 340ec1697d9bb3a9c464028af7a54245298502e91178bddb4c37626d36e197b7
MD5 67670224f931699c3836a1c9e4e8230b
BLAKE2b-256 66dee963d9af82917df84f2c1376136ab0b5323fdc0806438913969a4458e486

See more details on using hashes here.

File details

Details for the file numpy-1.15.1-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.15.1-cp34-cp34m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 13.8 MB
  • Tags: CPython 3.4m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.1-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ce75ed495a746e3e78cfa22a77096b3bff2eda995616cb7a542047f233091268
MD5 0edee0d56ea5670b93b47410e66fa337
BLAKE2b-256 26c5ed8379c03040146c807b472563df29134505c72e6980a253310368fc1877

See more details on using hashes here.

File details

Details for the file numpy-1.15.1-cp34-cp34m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.15.1-cp34-cp34m-manylinux1_i686.whl
  • Upload date:
  • Size: 10.1 MB
  • Tags: CPython 3.4m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.1-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 83b8fc18261b70f45bece2d392537c93dc81eb6c539a16c9ac994c47fc79f09a
MD5 3e488ea8de86391335a56e7e2b2c47de
BLAKE2b-256 98a1d0fea254dd3f838cfbbb15397c6c85f3a75fb6bf82a6ba5c1aee50b13734

See more details on using hashes here.

File details

Details for the file numpy-1.15.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.15.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 1c362ad12dd09a43b348bb28dd2295dd9cdf77f41f0f45965e04ba97f525b864
MD5 3c8950f10241185376ae6dd425209543
BLAKE2b-256 a40d6423d880a123c713bf55e406779b68e90f54b0d09b0f1260470853ea4845

See more details on using hashes here.

File details

Details for the file numpy-1.15.1-cp27-none-win_amd64.whl.

File metadata

  • Download URL: numpy-1.15.1-cp27-none-win_amd64.whl
  • Upload date:
  • Size: 13.5 MB
  • Tags: CPython 2.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.1-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 a3bd01d6d3ed3d7c06d7f9979ba5d68281f15383fafd53b81aa44b9191047cf8
MD5 8bc75bc94bd189a4cc3ded0f0e9b1353
BLAKE2b-256 f7f390837bee8673a1bc658ed908601a8e35290acec297b0f487d1a59d08e5b1

See more details on using hashes here.

File details

Details for the file numpy-1.15.1-cp27-none-win32.whl.

File metadata

  • Download URL: numpy-1.15.1-cp27-none-win32.whl
  • Upload date:
  • Size: 9.9 MB
  • Tags: CPython 2.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.1-cp27-none-win32.whl
Algorithm Hash digest
SHA256 dae8618c0bcbfcf6cf91350f8abcdd84158323711566a8c5892b5c7f832af76f
MD5 7b6fbdca75eeb0a0c28c09bfaf2e17c2
BLAKE2b-256 154af1560d912a1d7e6068469eb4aa5bc4766e9c3c64affeb3cf04c9af301738

See more details on using hashes here.

File details

Details for the file numpy-1.15.1-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.15.1-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 13.8 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 df0b02c6705c5d1c25cc35c7b5d6b6f9b3b30833f9d178843397ae55ecc2eebb
MD5 315cc1fb777c5251f27e49075b4d13fb
BLAKE2b-256 c9161134977cc35d2f72dbe80efa75a8e989ac21289f8e7e2c9005444cd17cd5

See more details on using hashes here.

File details

Details for the file numpy-1.15.1-cp27-cp27mu-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.15.1-cp27-cp27mu-manylinux1_i686.whl
  • Upload date:
  • Size: 10.1 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.1-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 62d55e96ec7b117d3d5e618c15efcf769e70a6effaee5842857b64fb4883887a
MD5 35e15be82a5fc807572c7723171902b4
BLAKE2b-256 eb73ef1c6a3bb9abbdc6d7b26313657befa8add8cbca67b800ef982640ca3926

See more details on using hashes here.

File details

Details for the file numpy-1.15.1-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.15.1-cp27-cp27m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 13.8 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.1-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 719b6789acb2bc86ea9b33a701d7c43dc2fc56d95107fd3c5b0a8230164d4dfb
MD5 50e3db64b9be2d399f7035ea71e16092
BLAKE2b-256 ab2a4d49a45f21880213f0cd8fb80bcdc695115d331e27894577a35de1bd2e18

See more details on using hashes here.

File details

Details for the file numpy-1.15.1-cp27-cp27m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.15.1-cp27-cp27m-manylinux1_i686.whl
  • Upload date:
  • Size: 10.1 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.1-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 419e6faee16097124ee627ed31572c7e80a1070efa25260b78097cca240e219a
MD5 75154de03468c18c8b8d337b75d29bad
BLAKE2b-256 4fc7b65267a3707c3830cbf0a21584baecfb22ec703d2cbee0eb846a7bb267bb

See more details on using hashes here.

File details

Details for the file numpy-1.15.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.15.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 5e359e9c531075220785603e5966eef20ccae9b3b6b8a06fdfb66c084361ce92
MD5 8e894e6873420259fa13bc685ca922a7
BLAKE2b-256 e7c1d5c47de35e366b1c2f60da88a24b25d3037b892417c5c3c5398313fb54f5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page