Skip to main content

NumPy: array processing for numbers, strings, records, and objects.

Project description

NumPy is a general-purpose array-processing package designed to efficiently manipulate large multi-dimensional arrays of arbitrary records without sacrificing too much speed for small multi-dimensional arrays. NumPy is built on the Numeric code base and adds features introduced by numarray as well as an extended C-API and the ability to create arrays of arbitrary type which also makes NumPy suitable for interfacing with general-purpose data-base applications.

There are also basic facilities for discrete fourier transform, basic linear algebra and random number generation.

All numpy wheels distributed from pypi are BSD licensed.

Windows wheels are linked against the ATLAS BLAS / LAPACK library, restricted to SSE2 instructions, so may not give optimal linear algebra performance for your machine. See http://docs.scipy.org/doc/numpy/user/install.html for alternatives.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.15.2.zip (4.5 MB view details)

Uploaded Source

Built Distributions

numpy-1.15.2-cp37-none-win_amd64.whl (13.5 MB view details)

Uploaded CPython 3.7 Windows x86-64

numpy-1.15.2-cp37-none-win32.whl (9.9 MB view details)

Uploaded CPython 3.7 Windows x86

numpy-1.15.2-cp37-cp37m-manylinux1_x86_64.whl (13.8 MB view details)

Uploaded CPython 3.7m

numpy-1.15.2-cp37-cp37m-manylinux1_i686.whl (10.2 MB view details)

Uploaded CPython 3.7m

numpy-1.15.2-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (24.5 MB view details)

Uploaded CPython 3.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.15.2-cp36-none-win_amd64.whl (13.5 MB view details)

Uploaded CPython 3.6 Windows x86-64

numpy-1.15.2-cp36-none-win32.whl (9.9 MB view details)

Uploaded CPython 3.6 Windows x86

numpy-1.15.2-cp36-cp36m-manylinux1_x86_64.whl (13.9 MB view details)

Uploaded CPython 3.6m

numpy-1.15.2-cp36-cp36m-manylinux1_i686.whl (10.2 MB view details)

Uploaded CPython 3.6m

numpy-1.15.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (24.5 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.15.2-cp35-none-win_amd64.whl (13.5 MB view details)

Uploaded CPython 3.5 Windows x86-64

numpy-1.15.2-cp35-none-win32.whl (9.9 MB view details)

Uploaded CPython 3.5 Windows x86

numpy-1.15.2-cp35-cp35m-manylinux1_x86_64.whl (13.8 MB view details)

Uploaded CPython 3.5m

numpy-1.15.2-cp35-cp35m-manylinux1_i686.whl (10.1 MB view details)

Uploaded CPython 3.5m

numpy-1.15.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (24.4 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.15.2-cp34-none-win_amd64.whl (13.5 MB view details)

Uploaded CPython 3.4 Windows x86-64

numpy-1.15.2-cp34-none-win32.whl (9.9 MB view details)

Uploaded CPython 3.4 Windows x86

numpy-1.15.2-cp34-cp34m-manylinux1_x86_64.whl (13.8 MB view details)

Uploaded CPython 3.4m

numpy-1.15.2-cp34-cp34m-manylinux1_i686.whl (10.1 MB view details)

Uploaded CPython 3.4m

numpy-1.15.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (24.4 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.15.2-cp27-none-win_amd64.whl (13.5 MB view details)

Uploaded CPython 2.7 Windows x86-64

numpy-1.15.2-cp27-none-win32.whl (9.9 MB view details)

Uploaded CPython 2.7 Windows x86

numpy-1.15.2-cp27-cp27mu-manylinux1_x86_64.whl (13.8 MB view details)

Uploaded CPython 2.7mu

numpy-1.15.2-cp27-cp27mu-manylinux1_i686.whl (10.1 MB view details)

Uploaded CPython 2.7mu

numpy-1.15.2-cp27-cp27m-manylinux1_x86_64.whl (13.8 MB view details)

Uploaded CPython 2.7m

numpy-1.15.2-cp27-cp27m-manylinux1_i686.whl (10.1 MB view details)

Uploaded CPython 2.7m

numpy-1.15.2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (24.5 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file numpy-1.15.2.zip.

File metadata

  • Download URL: numpy-1.15.2.zip
  • Upload date:
  • Size: 4.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.2.zip
Algorithm Hash digest
SHA256 27a0d018f608a3fe34ac5e2b876f4c23c47e38295c47dd0775cc294cd2614bc1
MD5 5a55a994eca6095b1e82d44600217ece
BLAKE2b-256 45ba2a781ebbb0cd7962cc1d12a6b65bd4eff57ffda449fdbbae4726dc05fbc3

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.2-cp37-none-win_amd64.whl.

File metadata

  • Download URL: numpy-1.15.2-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 13.5 MB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.2-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 cf4b970042ce148ad8dce4369c02a4078b382dadf20067ce2629c239d76460d1
MD5 de26b3d5573b0c9a6cd38eeb4e8d865e
BLAKE2b-256 96d653a59338c613e0c3ec7e3052bbf068a5457a005a5f7ad4ae005167c3597e

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.2-cp37-none-win32.whl.

File metadata

  • Download URL: numpy-1.15.2-cp37-none-win32.whl
  • Upload date:
  • Size: 9.9 MB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.2-cp37-none-win32.whl
Algorithm Hash digest
SHA256 3fde172e28c899580d32dc21cb6d4a1225d62362f61050b654545c662eac215a
MD5 2de0167b4297d1732e25c9288bbe3add
BLAKE2b-256 b4d747677a235c05ea267c326edf796991f969db737e84430edff770eb8e2bcc

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.2-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.15.2-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 13.8 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.2-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 58be95faf0ca2d886b5b337e7cba2923e3ad1224b806a91223ea39f1e0c77d03
MD5 4ce844e4452baf8c25025e53e59d91ff
BLAKE2b-256 984494cc2e139b611b16458384ff3b9c87f217144b5915b0a9798c07a7295437

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.2-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.15.2-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 10.2 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.2-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 ffab5b80bba8c86251291b8ce2e6c99a61446459d4c6637f5d5cc8c9ce37c972
MD5 38a69cfe0d954d05054a73e5f56b1533
BLAKE2b-256 f4c856d977b869853ea0fe0cb2bfc93b4b8ca44b63056920e97c59cbdac832d6

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.2-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.15.2-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 dca261e85fe0d34b2c242ecb31c9ab693509af2cf955d9caf01ee3ef3669abd0
MD5 921214854ed05d5e0c294b2fcc345d37
BLAKE2b-256 f964f47c172c2d2ee8907b5918ff7af7e52207f6bf4a57983e4474fcda728112

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.2-cp36-none-win_amd64.whl.

File metadata

  • Download URL: numpy-1.15.2-cp36-none-win_amd64.whl
  • Upload date:
  • Size: 13.5 MB
  • Tags: CPython 3.6, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.2-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 981daff58fa3985a26daa4faa2b726c4e7a1d45178100125c0e1fdaf2ac64978
MD5 948dbd9c23ac7948485d5a07a48a27eb
BLAKE2b-256 157b162a54ef1827fa9324d0610a526ab68b3c76c30b928c437df8c1d39bda86

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.2-cp36-none-win32.whl.

File metadata

  • Download URL: numpy-1.15.2-cp36-none-win32.whl
  • Upload date:
  • Size: 9.9 MB
  • Tags: CPython 3.6, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.2-cp36-none-win32.whl
Algorithm Hash digest
SHA256 5b4dfb6551eaeaf532054e2c6ef4b19c449c2e3a709ebdde6392acb1372ecabc
MD5 7f911b24989f8d6aa0e6617fea6e8c10
BLAKE2b-256 ffe97ee1eefad3ac289cf609c2b9305afe6362f75855b3e2fb8dd449a2f8819a

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.2-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.15.2-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 13.9 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.2-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a251570bb3cb04f1627f23c234ad09af0e54fc8194e026cf46178f2e5748d647
MD5 5151de4cfdec3623d4061d0e7a8677bb
BLAKE2b-256 2202bae88c4aaea4256d890adbf3f7cf33e59a443f9985cf91cd08a35656676a

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.2-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.15.2-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 10.2 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.2-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 8aeac8b08f4b8c52129518efcd93706bb6d506ccd17830b67d18d0227cf32d9e
MD5 e7835fb3d56d4bbcd8d47120df709cbf
BLAKE2b-256 47f2ef4bc33d986990f40e360bc9205cdec73c02e42a55a58ac09c6fc3e02f6c

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.15.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 4e28e66cf80c09a628ae680efeb0aa9a066eb4bb7db2a5669024c5b034891576
MD5 9e56f996c325345a5a3076a9f5d0abfe
BLAKE2b-256 0a2b726b7d4e4ba844d4805c52b8e05299a5f49bc16c69ca0fa8e1964c0871fe

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.2-cp35-none-win_amd64.whl.

File metadata

  • Download URL: numpy-1.15.2-cp35-none-win_amd64.whl
  • Upload date:
  • Size: 13.5 MB
  • Tags: CPython 3.5, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.2-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 71bf3b7ca15b1967bba3a1ef6a8e87286382a8b5e46ac76b42a02fe787c5237d
MD5 3086e690e4eef8b10523349e93c34dcb
BLAKE2b-256 7a625bf6d965aeada5119617e286e4c6b3a2f33fd007f251235c1f99df2b1d63

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.2-cp35-none-win32.whl.

File metadata

  • Download URL: numpy-1.15.2-cp35-none-win32.whl
  • Upload date:
  • Size: 9.9 MB
  • Tags: CPython 3.5, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.2-cp35-none-win32.whl
Algorithm Hash digest
SHA256 866bf72b9c3bfabe4476d866c70ee1714ad3e2f7b7048bb934892335e7b6b1f7
MD5 48e7213f7029a38e6a63e1e92c50c15d
BLAKE2b-256 979121b333d4e24772cde8ead495b87078015a358fd93e567400590f9963ec27

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.2-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.15.2-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 13.8 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.2-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 497d7c86df4f85eb03b7f58a7dd0f8b948b1f582e77629341f624ba301b4d204
MD5 de9a79dd7abcaa099b34234d7ee43903
BLAKE2b-256 7522355e68c80802d6f488223788fbda75c1daab83c3ef609153676c1f17be5f

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.2-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.15.2-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 10.1 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.2-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 f4dee74f2626c783a3804df9191e9008946a104d5a284e52427a53ff576423cb
MD5 f55e7f845d9f18a6c3cf8a0dc4515226
BLAKE2b-256 bc030645210e8ccae4a5a8d706754f7ef023496d85eeafcaef43647b22e20b19

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.15.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 8d2cfb0aef7ec8759736cce26946efa084cdf49797712333539ef7d135e0295e
MD5 e7100118df61980e784ac71a9eafe410
BLAKE2b-256 ff7733012e58a59c85d8a30c6e9fa54f46d6056b016d8f710d0102888f29c22a

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.2-cp34-none-win_amd64.whl.

File metadata

  • Download URL: numpy-1.15.2-cp34-none-win_amd64.whl
  • Upload date:
  • Size: 13.5 MB
  • Tags: CPython 3.4, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.2-cp34-none-win_amd64.whl
Algorithm Hash digest
SHA256 d1569013e8cc8f37e9769d19effdd85e404c976cd0ca28a94e3ddc026c216ae8
MD5 1f479fa8f54da6726aa9729d296d31e7
BLAKE2b-256 c49df0d5f2ae65adf22519461053b4d6b3a1b986110c794aa8a8cb62026d8a1b

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.2-cp34-none-win32.whl.

File metadata

  • Download URL: numpy-1.15.2-cp34-none-win32.whl
  • Upload date:
  • Size: 9.9 MB
  • Tags: CPython 3.4, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.2-cp34-none-win32.whl
Algorithm Hash digest
SHA256 9ad36dbfdbb0cba90a08e7343fadf86f43cf6d87450e8d2b5d71d7c7202907e4
MD5 5c54aa9f3825af973ed7c4c38bf499bc
BLAKE2b-256 6eef57b7f46c82ead2b954992bdb5f50547f13cedf2c6bf09e8e4d14d095ced3

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.2-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.15.2-cp34-cp34m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 13.8 MB
  • Tags: CPython 3.4m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.2-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f592fd7fe1f20b5041928cce1330937eca62f9058cb41e69c2c2d83cffc0d1e3
MD5 5f0b7cb501e3e459f043725330dd19f8
BLAKE2b-256 141c546724245c8b3aad39d807a0bed14a37b39943860c6b34456a363076c65b

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.2-cp34-cp34m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.15.2-cp34-cp34m-manylinux1_i686.whl
  • Upload date:
  • Size: 10.1 MB
  • Tags: CPython 3.4m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.2-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 981224224bbf44d95278eb37996162e8beb6f144d2719b144e86dfe2fce6c510
MD5 d774936507ac59e0ed8cd6b9592449fe
BLAKE2b-256 59b632e7b3e1fe4962c6da17d0f823657c5c2bf11d1b8838696b5222b9f4ea80

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.15.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 f2e55726a9ee2e8129d6ce6abb466304868051bcc7a09d652b3b07cd86e801a2
MD5 2e9bab1f2bb399945cd660062c1d63ac
BLAKE2b-256 58296e22d689614b9b24786a38e2e906c68ba4a75b886855177ceb24c2b18a84

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.2-cp27-none-win_amd64.whl.

File metadata

  • Download URL: numpy-1.15.2-cp27-none-win_amd64.whl
  • Upload date:
  • Size: 13.5 MB
  • Tags: CPython 2.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.2-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 c898f9cca806102fcacb6309899743aa39efb2ad2a302f4c319f54db9f05cd84
MD5 2e1c8985c10e813a7b8de54f18f99921
BLAKE2b-256 f9c577cff2ab0062caea941057052d47c206a5e4aa2a9e15880acb33452b5663

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.2-cp27-none-win32.whl.

File metadata

  • Download URL: numpy-1.15.2-cp27-none-win32.whl
  • Upload date:
  • Size: 9.9 MB
  • Tags: CPython 2.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.2-cp27-none-win32.whl
Algorithm Hash digest
SHA256 63f833a7c622e9082df3cbaf03b4fd92d7e0c11e2f9d87cb57dbf0e84441964b
MD5 3b6032a8100df348ab0c17545dd7b72d
BLAKE2b-256 08f04dac5ff93bb26062f2845a4805c3019547d5a27643b5b443bfddc7c8f801

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.2-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.15.2-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 13.8 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.2-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 82f00a1e2695a0e5b89879aa25ea614530b8ebdca6d49d4834843d498e8a5e92
MD5 48530fca78a9abdfa34c2b19c2d45600
BLAKE2b-256 40c5f1ed15dd931d6667b40f1ab1c2fe1f26805fc2b6c3e25e45664f838de9d0

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.2-cp27-cp27mu-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.15.2-cp27-cp27mu-manylinux1_i686.whl
  • Upload date:
  • Size: 10.1 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.2-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 733dc5d47e71236263837825b69c975bc08728ae638452b34aeb1d6fa347b780
MD5 008df3819bf77abdb0546d96f660bec0
BLAKE2b-256 a449f454aa408e6b82d9fb95669f181415db915dadb27127ee475eccf1eecddd

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.2-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.15.2-cp27-cp27m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 13.8 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.2-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ec8bf53ef7c92c99340972519adbe122e82c81d5b87cbd955c74ba8a8cd2a4ad
MD5 34b93ec0335f8dd028137bd3c1434800
BLAKE2b-256 c8c6e8e430828247adf0fc34e5499cfe17c66022c8afb778542808d009eb1457

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.2-cp27-cp27m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.15.2-cp27-cp27m-manylinux1_i686.whl
  • Upload date:
  • Size: 10.1 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.2-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 1b1cf8f7300cf7b11ddb4250b3898c711a6187df05341b5b7153db23ffe5d498
MD5 d80b588176313013d50a513d1b3d8cb8
BLAKE2b-256 73b61f186a5d75f6cfa15abb02c19bd2bd2eb98b3b417d672ae1bd4a33eb0fd8

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.15.2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 b5ff7dae352fd9e1edddad1348698e9fea14064460a7e39121ef9526745802e6
MD5 6935d733421b32533eebc7d9a5b1bde9
BLAKE2b-256 d647447d4e08e18c4f0e7f935db24d8afcfc9026a84002c0e5d85103c14baaf1

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page