Skip to main content

NumPy: array processing for numbers, strings, records, and objects.

Project description

NumPy is a general-purpose array-processing package designed to efficiently manipulate large multi-dimensional arrays of arbitrary records without sacrificing too much speed for small multi-dimensional arrays. NumPy is built on the Numeric code base and adds features introduced by numarray as well as an extended C-API and the ability to create arrays of arbitrary type which also makes NumPy suitable for interfacing with general-purpose data-base applications.

There are also basic facilities for discrete fourier transform, basic linear algebra and random number generation.

All numpy wheels distributed from pypi are BSD licensed.

Windows wheels are linked against the ATLAS BLAS / LAPACK library, restricted to SSE2 instructions, so may not give optimal linear algebra performance for your machine. See http://docs.scipy.org/doc/numpy/user/install.html for alternatives.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.15.3.zip (4.5 MB view details)

Uploaded Source

Built Distributions

numpy-1.15.3-cp37-none-win_amd64.whl (13.5 MB view details)

Uploaded CPython 3.7 Windows x86-64

numpy-1.15.3-cp37-none-win32.whl (9.9 MB view details)

Uploaded CPython 3.7 Windows x86

numpy-1.15.3-cp37-cp37m-manylinux1_x86_64.whl (13.8 MB view details)

Uploaded CPython 3.7m

numpy-1.15.3-cp37-cp37m-manylinux1_i686.whl (10.2 MB view details)

Uploaded CPython 3.7m

numpy-1.15.3-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (24.5 MB view details)

Uploaded CPython 3.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.15.3-cp36-none-win_amd64.whl (13.5 MB view details)

Uploaded CPython 3.6 Windows x86-64

numpy-1.15.3-cp36-none-win32.whl (9.9 MB view details)

Uploaded CPython 3.6 Windows x86

numpy-1.15.3-cp36-cp36m-manylinux1_x86_64.whl (13.9 MB view details)

Uploaded CPython 3.6m

numpy-1.15.3-cp36-cp36m-manylinux1_i686.whl (10.2 MB view details)

Uploaded CPython 3.6m

numpy-1.15.3-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (24.5 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.15.3-cp35-none-win_amd64.whl (13.5 MB view details)

Uploaded CPython 3.5 Windows x86-64

numpy-1.15.3-cp35-none-win32.whl (9.9 MB view details)

Uploaded CPython 3.5 Windows x86

numpy-1.15.3-cp35-cp35m-manylinux1_x86_64.whl (13.8 MB view details)

Uploaded CPython 3.5m

numpy-1.15.3-cp35-cp35m-manylinux1_i686.whl (10.1 MB view details)

Uploaded CPython 3.5m

numpy-1.15.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (24.5 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.15.3-cp34-none-win_amd64.whl (13.5 MB view details)

Uploaded CPython 3.4 Windows x86-64

numpy-1.15.3-cp34-none-win32.whl (9.9 MB view details)

Uploaded CPython 3.4 Windows x86

numpy-1.15.3-cp34-cp34m-manylinux1_x86_64.whl (13.8 MB view details)

Uploaded CPython 3.4m

numpy-1.15.3-cp34-cp34m-manylinux1_i686.whl (10.1 MB view details)

Uploaded CPython 3.4m

numpy-1.15.3-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (24.4 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.15.3-cp27-none-win_amd64.whl (13.5 MB view details)

Uploaded CPython 2.7 Windows x86-64

numpy-1.15.3-cp27-none-win32.whl (9.9 MB view details)

Uploaded CPython 2.7 Windows x86

numpy-1.15.3-cp27-cp27mu-manylinux1_x86_64.whl (13.8 MB view details)

Uploaded CPython 2.7mu

numpy-1.15.3-cp27-cp27mu-manylinux1_i686.whl (10.1 MB view details)

Uploaded CPython 2.7mu

numpy-1.15.3-cp27-cp27m-manylinux1_x86_64.whl (13.8 MB view details)

Uploaded CPython 2.7m

numpy-1.15.3-cp27-cp27m-manylinux1_i686.whl (10.1 MB view details)

Uploaded CPython 2.7m

numpy-1.15.3-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (24.5 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file numpy-1.15.3.zip.

File metadata

  • Download URL: numpy-1.15.3.zip
  • Upload date:
  • Size: 4.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.3.zip
Algorithm Hash digest
SHA256 1c0c80e74759fa4942298044274f2c11b08c86230b25b8b819e55e644f5ff2b6
MD5 7f1b9e521c2a662cecf3708026e8bdad
BLAKE2b-256 836bd03277eacf113697675cd659086a4dcf9472108e2f1a83884c0271bdca46

See more details on using hashes here.

File details

Details for the file numpy-1.15.3-cp37-none-win_amd64.whl.

File metadata

  • Download URL: numpy-1.15.3-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 13.5 MB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.3-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 a245464ddf6d90e2d6287e9cef6bcfda2a99467fdcf1b677b99cd0b6c7b43de2
MD5 9a692a2bbcbaabf98f19fbd9c0c5c163
BLAKE2b-256 f7f062f520cbefd6f398dc05115bb83e97196d7601ebf1ca75e9a02145bf7b2f

See more details on using hashes here.

File details

Details for the file numpy-1.15.3-cp37-none-win32.whl.

File metadata

  • Download URL: numpy-1.15.3-cp37-none-win32.whl
  • Upload date:
  • Size: 9.9 MB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.3-cp37-none-win32.whl
Algorithm Hash digest
SHA256 094f8a83e5bd0a44a7557fa24a46db6ba7d5299c389ddbc9e0e18722f567fb63
MD5 2719106f42758fd285bce25fa3c1a78e
BLAKE2b-256 5042f8310b51b3b9deccff3fe2e2b4e627ac8010f435f622ad225cd3ca6936ce

See more details on using hashes here.

File details

Details for the file numpy-1.15.3-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.15.3-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 13.8 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.3-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f1fd1a6f40a501ba4035f5ed2c1f4faa68245d1407bf97d2ee401e4f23d1720b
MD5 2317122b49e79ffad91250a428ca54f9
BLAKE2b-256 f21fa05544224706463a1c28589db5900247c7e85a077a0d254e7db012fbb008

See more details on using hashes here.

File details

Details for the file numpy-1.15.3-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.15.3-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 10.2 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.3-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 ef694fe72a3995aa778a5095bda946e0d31f7efabd5e8063ad8c6238ab7d3f78
MD5 096f70a3a147a596a9317ce8ac9bf1bd
BLAKE2b-256 752e00ee0b5d1a9d4b6561f33c192080a3833676b053cba03ed2ec44698110c4

See more details on using hashes here.

File details

Details for the file numpy-1.15.3-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.15.3-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 2aa0910eaeb603b1a5598193cc3bc8eacf1baf6c95cbc3955eb8e15fa380c133
MD5 c3a332b97d53c60d8c129a1a8e062652
BLAKE2b-256 a8e1838e35e6f44e2bc19bf902e945c34ae730a33a8e346d6208bf7c4d751416

See more details on using hashes here.

File details

Details for the file numpy-1.15.3-cp36-none-win_amd64.whl.

File metadata

  • Download URL: numpy-1.15.3-cp36-none-win_amd64.whl
  • Upload date:
  • Size: 13.5 MB
  • Tags: CPython 3.6, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.3-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 fa337b6bd5fe2b8c4e705f4102186feb9985de9bb8536d32d5129a658f1789e0
MD5 890f23c488a00a2c64578bcb3737533e
BLAKE2b-256 10b6feaabbe393afe1ad4c803cdd7c2ada688613448e0987b016a3980b2f08c6

See more details on using hashes here.

File details

Details for the file numpy-1.15.3-cp36-none-win32.whl.

File metadata

  • Download URL: numpy-1.15.3-cp36-none-win32.whl
  • Upload date:
  • Size: 9.9 MB
  • Tags: CPython 3.6, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.3-cp36-none-win32.whl
Algorithm Hash digest
SHA256 d8837ff272800668aabdfe70b966631914b0d6513aed4fc1b1428446f771834d
MD5 a3c7ce17e1fdf009950f2f41adcde29b
BLAKE2b-256 b0b3cfbdbb7a57a2f46cb4fa894ded92ae501eed2543b86acfe20aca79463176

See more details on using hashes here.

File details

Details for the file numpy-1.15.3-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.15.3-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 13.9 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.3-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7ae9c3baff3b989859c88e0168ad10902118595b996bf781eaf011bb72428798
MD5 4ed669d22449b6e1759b320ff9b37eb7
BLAKE2b-256 16212e88568c134cc3c8d22af290865e2abbd86efa58a1358ffcb19b6c74f9a3

See more details on using hashes here.

File details

Details for the file numpy-1.15.3-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.15.3-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 10.2 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.3-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 866a7c8774ccc7d603667fad95456b4cf56d79a2bb5a7648ac9f0082e0b9416e
MD5 bece3ef7768bfa7b354b8d1014aa85b3
BLAKE2b-256 cfbcbdc97ad238e8dcf117d161a00c6742d59de250230c1805c9c41139971efc

See more details on using hashes here.

File details

Details for the file numpy-1.15.3-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.15.3-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 032df9b6571c5f1d41ea6f6a189223208cb488990373aa686aca55570fcccb42
MD5 ed7b1d79ad554f59c65b6c2d15924624
BLAKE2b-256 f2e21d03c54f1c5d81dbcbdac04861a2e7c50673915386c32e625af090b281bf

See more details on using hashes here.

File details

Details for the file numpy-1.15.3-cp35-none-win_amd64.whl.

File metadata

  • Download URL: numpy-1.15.3-cp35-none-win_amd64.whl
  • Upload date:
  • Size: 13.5 MB
  • Tags: CPython 3.5, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.3-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 9fff90c88bfaad2901be50453d5cd7897a826c1d901f0654ee1d73ab3a48cd18
MD5 2ea2c18feb7f92ebd6b64261265d1b7f
BLAKE2b-256 0b8529653ec7612fcf8c80128292b18dd069f9871f0fcbabfc7a6c635ec8c217

See more details on using hashes here.

File details

Details for the file numpy-1.15.3-cp35-none-win32.whl.

File metadata

  • Download URL: numpy-1.15.3-cp35-none-win32.whl
  • Upload date:
  • Size: 9.9 MB
  • Tags: CPython 3.5, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.3-cp35-none-win32.whl
Algorithm Hash digest
SHA256 ce3622b73ccd844ba301c1aea65d36cf9d8331e7c25c16b1725d0f14db99aaf4
MD5 c1421e59a425b6cd1307a45612c4911f
BLAKE2b-256 194303d84bf2780384b31cafbe55870217080e50cf224ed0f75d606051c5be0f

See more details on using hashes here.

File details

Details for the file numpy-1.15.3-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.15.3-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 13.8 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.3-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2f5ebc7a04885c7d69e5daa05208faef4db7f1ae6a99f4d36962df8cd54cdc76
MD5 52d5bd16e06561e735cb7f461370e697
BLAKE2b-256 98d6ebc4f752b683d190361248ecce4d5a0977b5c483370aa7ff63b733e8f011

See more details on using hashes here.

File details

Details for the file numpy-1.15.3-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.15.3-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 10.1 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.3-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 8bc4b92a273659e44ca3f3a2f8786cfa39d8302223bcfe7df794429c63d5f5a1
MD5 7a7578978757cb69507ab680a2f9b8f3
BLAKE2b-256 373a43b207ce9718e5bd976bcaea3b1b50f0ca53aab33521feb80288ce8e53bd

See more details on using hashes here.

File details

Details for the file numpy-1.15.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.15.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 32a07241cb624e104b88b08dea2851bf4ec5d65a1f599d7735041ced7171fd7a
MD5 f7a9b021b45372fa39e009ae396d6108
BLAKE2b-256 f93b5a073d6646bebf69aa367f1011a4ad073ee9f67f8e121acd07746a5e2a56

See more details on using hashes here.

File details

Details for the file numpy-1.15.3-cp34-none-win_amd64.whl.

File metadata

  • Download URL: numpy-1.15.3-cp34-none-win_amd64.whl
  • Upload date:
  • Size: 13.5 MB
  • Tags: CPython 3.4, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.3-cp34-none-win_amd64.whl
Algorithm Hash digest
SHA256 c9f4dafd6065c4c782be84cd67ceeb9b1d4380af60a7af32be10ebecd723385e
MD5 64ebc4e0a722e5a6f1bd697309c3f951
BLAKE2b-256 d29ae377ff2dabf66493ac607f6b45b4efeda898ad3fbc43b418bd7dba4a1d67

See more details on using hashes here.

File details

Details for the file numpy-1.15.3-cp34-none-win32.whl.

File metadata

  • Download URL: numpy-1.15.3-cp34-none-win32.whl
  • Upload date:
  • Size: 9.9 MB
  • Tags: CPython 3.4, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.3-cp34-none-win32.whl
Algorithm Hash digest
SHA256 b7599ff4acd23f5de983e3aec772153b1043e131487a5c6ad0f94b41a828877a
MD5 47b03a3e34152c7e1ae7056f672674a5
BLAKE2b-256 1b7657eaaa9823d04a1705319ce44efa8079a672147001430d30ccb526f88495

See more details on using hashes here.

File details

Details for the file numpy-1.15.3-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.15.3-cp34-cp34m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 13.8 MB
  • Tags: CPython 3.4m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.3-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 63bca71691339d2d6f8a7c970821f2b12098a53afccc0190d4e1555e75e5223a
MD5 2eb4e845844b91853743bb4d4316e237
BLAKE2b-256 6f77544d3d6440fcb5c494e4225ef8db904ad68639b0e23d85e617b642041551

See more details on using hashes here.

File details

Details for the file numpy-1.15.3-cp34-cp34m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.15.3-cp34-cp34m-manylinux1_i686.whl
  • Upload date:
  • Size: 10.1 MB
  • Tags: CPython 3.4m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.3-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 d0f36a24cf8061a2c03e151be3418146717505b9b4ec17502fa3bbdb04ec1431
MD5 4c2a4a7685c7431937aa0b5e6425b7de
BLAKE2b-256 bde27779ef87909737eeff0b00ce9a2d20db974dd54a35d9e19b7039abffe3e3

See more details on using hashes here.

File details

Details for the file numpy-1.15.3-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.15.3-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 febd31cd0d2fd2509ca2ec53cb339f8bf593c1bd245b9fc55c1917a68532a0af
MD5 c021f69eeed541202947d11c0ec3c2f4
BLAKE2b-256 3061432f38cbef3e75663c7c394ceca29b8eee8af7ccc57bb0da253dc8fcde39

See more details on using hashes here.

File details

Details for the file numpy-1.15.3-cp27-none-win_amd64.whl.

File metadata

  • Download URL: numpy-1.15.3-cp27-none-win_amd64.whl
  • Upload date:
  • Size: 13.5 MB
  • Tags: CPython 2.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.3-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 b12fe6f31babb9477aa0f9692730654b3ee0e71f33b4568170dfafd439caf0a2
MD5 da69a44d0292379a261f1bf33b2afe3e
BLAKE2b-256 4c71a24f42b7f79bb48e366d5e9683edcda0e1dfe195e481363f9ae984c94aab

See more details on using hashes here.

File details

Details for the file numpy-1.15.3-cp27-none-win32.whl.

File metadata

  • Download URL: numpy-1.15.3-cp27-none-win32.whl
  • Upload date:
  • Size: 9.9 MB
  • Tags: CPython 2.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.3-cp27-none-win32.whl
Algorithm Hash digest
SHA256 d263f8f14f2da0c079c0297e829e550d8f2c4e0ffef215506bd1d0ddd2bff3de
MD5 3bac2fd14dc19c20a0ced77bb8c395de
BLAKE2b-256 f742d608458fddf8080c6764efff377da563bf495e4ef4ec743628a800600694

See more details on using hashes here.

File details

Details for the file numpy-1.15.3-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.15.3-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 13.8 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.3-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 919f65e0732195474897b1cafefb4d4e7c2bb8174a725e506b62e9096e4df28d
MD5 ebd394af280ee41b55add821f84dc180
BLAKE2b-256 9eebc9eda9f4865d669e0bb37ce5c780e86c63daa54ca827b95a171429012d08

See more details on using hashes here.

File details

Details for the file numpy-1.15.3-cp27-cp27mu-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.15.3-cp27-cp27mu-manylinux1_i686.whl
  • Upload date:
  • Size: 10.1 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.3-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 3d8f9273c763a139a99e65c2a3c10f1109df30bedae7f011b10d95c538364704
MD5 f7430f4ca8d179a9e34072c0d1c1ca9c
BLAKE2b-256 bdc734e15e33cde3cf124eaa364fcf5fcd55432b12f10d988482f916512a1ff2

See more details on using hashes here.

File details

Details for the file numpy-1.15.3-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.15.3-cp27-cp27m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 13.8 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.3-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a988db28f54e104a01e8573ceb6f28202b4c15635b1450b2e3b2b822c6564f9b
MD5 6d92d50f6235501475b642fc35212ad7
BLAKE2b-256 a0c2c19f2032dd57e5acddc9399dba39925f9d94cf877c11574e97a555ed84e9

See more details on using hashes here.

File details

Details for the file numpy-1.15.3-cp27-cp27m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.15.3-cp27-cp27m-manylinux1_i686.whl
  • Upload date:
  • Size: 10.1 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.3-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 9d1598573d310104acb90377f0a8c2319f737084689f5eb18012becaf345cda5
MD5 85faf750ff68d76dad812eb6410cc417
BLAKE2b-256 358f774d0eaf1bb6d3e12f46965ffa1d90dc61255458e0834edaf60e47109e18

See more details on using hashes here.

File details

Details for the file numpy-1.15.3-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.15.3-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 3c7959f750b54b445f14962a3ddc41b9eadbab00b86da55fbb1967b2b79aad10
MD5 fc1ae8356a65804d02e5c7d9c1c07f65
BLAKE2b-256 338e6ae57e52c39ca3aed05f77f452c74a62f8deab53919f6c3d2ddcc448cc34

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page