Skip to main content

NumPy: array processing for numbers, strings, records, and objects.

Project description

NumPy is a general-purpose array-processing package designed to efficiently manipulate large multi-dimensional arrays of arbitrary records without sacrificing too much speed for small multi-dimensional arrays. NumPy is built on the Numeric code base and adds features introduced by numarray as well as an extended C-API and the ability to create arrays of arbitrary type which also makes NumPy suitable for interfacing with general-purpose data-base applications.

There are also basic facilities for discrete fourier transform, basic linear algebra and random number generation.

All numpy wheels distributed from pypi are BSD licensed.

Windows wheels are linked against the ATLAS BLAS / LAPACK library, restricted to SSE2 instructions, so may not give optimal linear algebra performance for your machine. See http://docs.scipy.org/doc/numpy/user/install.html for alternatives.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.15.4.zip (4.5 MB view details)

Uploaded Source

Built Distributions

numpy-1.15.4-cp37-none-win_amd64.whl (13.5 MB view details)

Uploaded CPython 3.7 Windows x86-64

numpy-1.15.4-cp37-none-win32.whl (9.9 MB view details)

Uploaded CPython 3.7 Windows x86

numpy-1.15.4-cp37-cp37m-manylinux1_x86_64.whl (13.8 MB view details)

Uploaded CPython 3.7m

numpy-1.15.4-cp37-cp37m-manylinux1_i686.whl (10.2 MB view details)

Uploaded CPython 3.7m

numpy-1.15.4-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (24.5 MB view details)

Uploaded CPython 3.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.15.4-cp36-none-win_amd64.whl (13.5 MB view details)

Uploaded CPython 3.6 Windows x86-64

numpy-1.15.4-cp36-none-win32.whl (9.9 MB view details)

Uploaded CPython 3.6 Windows x86

numpy-1.15.4-cp36-cp36m-manylinux1_x86_64.whl (13.9 MB view details)

Uploaded CPython 3.6m

numpy-1.15.4-cp36-cp36m-manylinux1_i686.whl (10.2 MB view details)

Uploaded CPython 3.6m

numpy-1.15.4-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (24.5 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.15.4-cp35-none-win_amd64.whl (13.5 MB view details)

Uploaded CPython 3.5 Windows x86-64

numpy-1.15.4-cp35-none-win32.whl (9.9 MB view details)

Uploaded CPython 3.5 Windows x86

numpy-1.15.4-cp35-cp35m-manylinux1_x86_64.whl (13.8 MB view details)

Uploaded CPython 3.5m

numpy-1.15.4-cp35-cp35m-manylinux1_i686.whl (10.1 MB view details)

Uploaded CPython 3.5m

numpy-1.15.4-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (24.5 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.15.4-cp34-none-win_amd64.whl (13.5 MB view details)

Uploaded CPython 3.4 Windows x86-64

numpy-1.15.4-cp34-none-win32.whl (9.9 MB view details)

Uploaded CPython 3.4 Windows x86

numpy-1.15.4-cp34-cp34m-manylinux1_x86_64.whl (13.8 MB view details)

Uploaded CPython 3.4m

numpy-1.15.4-cp34-cp34m-manylinux1_i686.whl (10.1 MB view details)

Uploaded CPython 3.4m

numpy-1.15.4-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (24.4 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.15.4-cp27-none-win_amd64.whl (13.5 MB view details)

Uploaded CPython 2.7 Windows x86-64

numpy-1.15.4-cp27-none-win32.whl (9.9 MB view details)

Uploaded CPython 2.7 Windows x86

numpy-1.15.4-cp27-cp27mu-manylinux1_x86_64.whl (13.8 MB view details)

Uploaded CPython 2.7mu

numpy-1.15.4-cp27-cp27mu-manylinux1_i686.whl (10.2 MB view details)

Uploaded CPython 2.7mu

numpy-1.15.4-cp27-cp27m-manylinux1_x86_64.whl (13.8 MB view details)

Uploaded CPython 2.7m

numpy-1.15.4-cp27-cp27m-manylinux1_i686.whl (10.2 MB view details)

Uploaded CPython 2.7m

numpy-1.15.4-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (24.5 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file numpy-1.15.4.zip.

File metadata

  • Download URL: numpy-1.15.4.zip
  • Upload date:
  • Size: 4.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.4.zip
Algorithm Hash digest
SHA256 3d734559db35aa3697dadcea492a423118c5c55d176da2f3be9c98d4803fc2a7
MD5 219ac537d12cf06ed14f478662096ebc
BLAKE2b-256 2d801809de155bad674b494248bcfca0e49eb4c5d8bee58f26fe7a0dd45029e2

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.4-cp37-none-win_amd64.whl.

File metadata

  • Download URL: numpy-1.15.4-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 13.5 MB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.4-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 a61dc29cfca9831a03442a21d4b5fd77e3067beca4b5f81f1a89a04a71cf93fa
MD5 6097910d675f9e81d5d131b91a6c5c61
BLAKE2b-256 000e5a8c34adb97fc1cd6636d78050e575945e874c8516d501421d5a0f377a6c

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.4-cp37-none-win32.whl.

File metadata

  • Download URL: numpy-1.15.4-cp37-none-win32.whl
  • Upload date:
  • Size: 9.9 MB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.4-cp37-none-win32.whl
Algorithm Hash digest
SHA256 b1f44c335532c0581b77491b7715a871d0dd72e97487ac0f57337ccf3ab3469b
MD5 6291159933eb5a7f9c0bf28ae9707739
BLAKE2b-256 425aeaf3de1cd47a5a6baca41215fba0528ee277259604a50229190abf0a6dd2

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.4-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.15.4-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 13.8 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.4-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4a22dc3f5221a644dfe4a63bf990052cc674ef12a157b1056969079985c92816
MD5 fc046ba978ef4dd0556af09643c57d30
BLAKE2b-256 3839f73e104d44f19a6203e786d5204532e214443ea2954917b27f3229e7639b

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.4-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.15.4-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 10.2 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.4-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 a4cc09489843c70b22e8373ca3dfa52b3fab778b57cf81462f1203b0852e95e3
MD5 e79239cd9a3ce3cbfa5e7345bfb2ca56
BLAKE2b-256 6c386712d42fa631c5443084246e724943df6e2052a99ffd36ee025fb9a0d541

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.4-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.15.4-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 1e8956c37fc138d65ded2d96ab3949bd49038cc6e8a4494b1515b0ba88c91565
MD5 1f6990e094c6b2bb47c6a528ac7b1263
BLAKE2b-256 3dc3a69406093c9a780a74964f41cd56b06c0346d686a9b3f392d123a663f5e0

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.4-cp36-none-win_amd64.whl.

File metadata

  • Download URL: numpy-1.15.4-cp36-none-win_amd64.whl
  • Upload date:
  • Size: 13.5 MB
  • Tags: CPython 3.6, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.4-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 73a1f2a529604c50c262179fcca59c87a05ff4614fe8a15c186934d84d09d9a5
MD5 c9cf7a267f8d2f57dc6384cc8b9f5acf
BLAKE2b-256 51707096a735b27359dbc0c380b23b9c9bd05fea62233f95849c43a6b02c5f40

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.4-cp36-none-win32.whl.

File metadata

  • Download URL: numpy-1.15.4-cp36-none-win32.whl
  • Upload date:
  • Size: 9.9 MB
  • Tags: CPython 3.6, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.4-cp36-none-win32.whl
Algorithm Hash digest
SHA256 b1853df739b32fa913cc59ad9137caa9cc3d97ff871e2bbd89c2a2a1d4a69451
MD5 21df485f92248c13cab3838762d717f6
BLAKE2b-256 c0fa231e17904bb9b2115504a583592834870c90088664f296dea6f953578488

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.4-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.15.4-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 13.9 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.4-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 23557bdbca3ccbde3abaa12a6e82299bc92d2b9139011f8c16ca1bb8c75d1e95
MD5 6293fa6db83849aab3a8b1a606cf3d03
BLAKE2b-256 ff7f9d804d2348471c67a7d8b5f84f9bc59fd1cefa148986f2b74552f8573555

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.4-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.15.4-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 10.2 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.4-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 24fd645a5e5d224aa6e39d93e4a722fafa9160154f296fd5ef9580191c755053
MD5 b98cbad7770856dc12c827dca7c201b4
BLAKE2b-256 791794d8f68824a6cff7db214a9947e2be9e696603750538696090590bb03c5d

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.4-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.15.4-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 416a2070acf3a2b5d586f9a6507bb97e33574df5bd7508ea970bbf4fc563fa52
MD5 76ed46a4d4e9cdb7076bf1359d9df1d4
BLAKE2b-256 74682b00ba3c7390354db2a1706291750b6b7e911f6f79c0bd2184ae04f3c6fd

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.4-cp35-none-win_amd64.whl.

File metadata

  • Download URL: numpy-1.15.4-cp35-none-win_amd64.whl
  • Upload date:
  • Size: 13.5 MB
  • Tags: CPython 3.5, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.4-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 4f41fd159fba1245e1958a99d349df49c616b133636e0cf668f169bce2aeac2d
MD5 25b45b69d624cb07a8c05a5f82779b0a
BLAKE2b-256 a11ad3491298c548870dd9c31d40f0234ff71a1f337d98581c978338d6b83d00

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.4-cp35-none-win32.whl.

File metadata

  • Download URL: numpy-1.15.4-cp35-none-win32.whl
  • Upload date:
  • Size: 9.9 MB
  • Tags: CPython 3.5, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.4-cp35-none-win32.whl
Algorithm Hash digest
SHA256 561ef098c50f91fbac2cc9305b68c915e9eb915a74d9038ecf8af274d748f76f
MD5 b67621a1c9b8dcac707ca22055629e9f
BLAKE2b-256 ad0c881d803e24f8de5d94003f1136e5d0c1de80104d71ff39347cfb85f20ad5

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.4-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.15.4-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 13.8 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.4-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 cf5bb4a7d53a71bb6a0144d31df784a973b36d8687d615ef6a7e9b1809917a9b
MD5 3b10a2fcf8610bbbfe08161e1d9d176e
BLAKE2b-256 8604bd774106ae0ae1ada68c67efe89f1a16b2aa373cc2db15d974002a9f136d

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.4-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.15.4-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 10.1 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.4-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 ecf81720934a0e18526177e645cbd6a8a21bb0ddc887ff9738de07a1df5c6b61
MD5 537949e404ecc5814cb0db534bdfef36
BLAKE2b-256 1eff34a2f96818655dfe75c2ac91dd7413d7b8636a70e995a39abcbbba644f8f

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.4-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.15.4-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 56994e14b386b5c0a9b875a76d22d707b315fa037affc7819cda08b6d0489756
MD5 8906282c374b9b008c5c6401e5dc750b
BLAKE2b-256 88a1e3aaf62d35353d6fa0abe9c4044edf536470a28fc56c633e3efa859aa8dd

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.4-cp34-none-win_amd64.whl.

File metadata

  • Download URL: numpy-1.15.4-cp34-none-win_amd64.whl
  • Upload date:
  • Size: 13.5 MB
  • Tags: CPython 3.4, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.4-cp34-none-win_amd64.whl
Algorithm Hash digest
SHA256 7da99445fd890206bfcc7419f79871ba8e73d9d9e6b82fe09980bc5bb4efc35f
MD5 c269c8f2fce6cefdffe5e3821fc04fb5
BLAKE2b-256 b17c5c700b90898bd57e5698d971d54f460c3e81057a3206eac1a4e94c36f176

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.4-cp34-none-win32.whl.

File metadata

  • Download URL: numpy-1.15.4-cp34-none-win32.whl
  • Upload date:
  • Size: 9.9 MB
  • Tags: CPython 3.4, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.4-cp34-none-win32.whl
Algorithm Hash digest
SHA256 df04f4bad8a359daa2ff74f8108ea051670cafbca533bb2636c58b16e962989e
MD5 c1e1f381de7abc96509d4c5463903755
BLAKE2b-256 e610798bd58c97068aad4cb24e9ba60dcc7ce2e8aac7a871ea493708039a8100

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.4-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.15.4-cp34-cp34m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 13.8 MB
  • Tags: CPython 3.4m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.4-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 db9814ff0457b46f2e1d494c1efa4111ca089e08c8b983635ebffb9c1573361f
MD5 ae16e02274996ff926a30f23f6d6d7e8
BLAKE2b-256 05d472eaba30abdcee0bb99cbdb21dbdb3f5d23a5041574fa7d94003b9afd3bc

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.4-cp34-cp34m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.15.4-cp34-cp34m-manylinux1_i686.whl
  • Upload date:
  • Size: 10.1 MB
  • Tags: CPython 3.4m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.4-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 b261e0cb0d6faa8fd6863af26d30351fd2ffdb15b82e51e81e96b9e9e2e7ba16
MD5 a7614f6318899aa1bfbc337232c4647f
BLAKE2b-256 8139ccab829b2489413b40109e6f2740a5b7e8c3e57bdec140fc3d6256fd2efe

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.4-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.15.4-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 edfa6fba9157e0e3be0f40168eb142511012683ac3dc82420bee4a3f3981b30e
MD5 fa0acf5b2f852454346df5486a4ff4d9
BLAKE2b-256 66457439e177ffd2870fe71109f3587c62add820c023d307e3600966e67a7ba0

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.4-cp27-none-win_amd64.whl.

File metadata

  • Download URL: numpy-1.15.4-cp27-none-win_amd64.whl
  • Upload date:
  • Size: 13.5 MB
  • Tags: CPython 2.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.4-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 99d59e0bcadac4aa3280616591fb7bcd560e2218f5e31d5223a2e12a1425d495
MD5 cb38e4778d9db33199dc7bb6a69ce089
BLAKE2b-256 74a41bae5948ac37ee6769ffdf01fef3e1c731981574d4d416e2876070441688

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.4-cp27-none-win32.whl.

File metadata

  • Download URL: numpy-1.15.4-cp27-none-win32.whl
  • Upload date:
  • Size: 9.9 MB
  • Tags: CPython 2.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.4-cp27-none-win32.whl
Algorithm Hash digest
SHA256 36e36b6868e4440760d4b9b44587ea1dc1f06532858d10abba98e851e154ca70
MD5 b550d4cc012623a0c38f1392e08f4805
BLAKE2b-256 a7018f627ce395d4e537dd25865c71302b70e4537d71176f7207c038d0292998

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.4-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.15.4-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 13.8 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.4-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0df89ca13c25eaa1621a3f09af4c8ba20da849692dcae184cb55e80952c453fb
MD5 8ef2d1ea4571cdd0e7e8dfd5128436b4
BLAKE2b-256 de37fe7db552f4507f379d81dcb78e58e05030a8941757b1f664517d581b5553

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.4-cp27-cp27mu-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.15.4-cp27-cp27mu-manylinux1_i686.whl
  • Upload date:
  • Size: 10.2 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.4-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 c857ae5dba375ea26a6228f98c195fec0898a0fd91bcf0e8a0cae6d9faf3eca7
MD5 ea6bd39d05539847a0ebb12ff955251a
BLAKE2b-256 15c8c1d8dce6fbfe3b4d600a1916a29b0116765c0c77c4fc8cbd26e205e094dc

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.4-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.15.4-cp27-cp27m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 13.8 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.4-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4d8d3e5aa6087490912c14a3c10fbdd380b40b421c13920ff468163bc50e016f
MD5 988d0b321d0b7576b105528fc948ddc3
BLAKE2b-256 e9fcf9c48983b3f6337e8f8178af33f4f036f0ca9e1dfa4d8d0e3bd6309638e3

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.4-cp27-cp27m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.15.4-cp27-cp27m-manylinux1_i686.whl
  • Upload date:
  • Size: 10.2 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.15.4-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 154c35f195fd3e1fad2569930ca51907057ae35e03938f89a8aedae91dd1b7c7
MD5 4c687d8cd7833e0b549d4a20905f29a2
BLAKE2b-256 8ce19b86aaefeba4992331dd059cae71addad85be6d89b03dd4369ed8e1b05ca

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.15.4-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.15.4-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 18e84323cdb8de3325e741a7a8dd4a82db74fde363dce32b625324c7b32aa6d7
MD5 277c501cfcc67767d73d83a53ba69ecb
BLAKE2b-256 c0b92b485bb32d0b26631f433580d90daad5dea830e6dc5bd18c4f227b1829f7

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page