Skip to main content

NumPy is the fundamental package for array computing with Python.

Project description

It provides:

  • a powerful N-dimensional array object

  • sophisticated (broadcasting) functions

  • tools for integrating C/C++ and Fortran code

  • useful linear algebra, Fourier transform, and random number capabilities

  • and much more

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.

All NumPy wheels distributed on PyPI are BSD licensed.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.16.0.zip (5.1 MB view details)

Uploaded Source

Built Distributions

numpy-1.16.0-cp37-cp37m-win_amd64.whl (11.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

numpy-1.16.0-cp37-cp37m-win32.whl (10.0 MB view details)

Uploaded CPython 3.7m Windows x86

numpy-1.16.0-cp37-cp37m-manylinux1_x86_64.whl (17.3 MB view details)

Uploaded CPython 3.7m

numpy-1.16.0-cp37-cp37m-manylinux1_i686.whl (14.8 MB view details)

Uploaded CPython 3.7m

numpy-1.16.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (13.9 MB view details)

Uploaded CPython 3.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.16.0-cp36-cp36m-win_amd64.whl (11.9 MB view details)

Uploaded CPython 3.6m Windows x86-64

numpy-1.16.0-cp36-cp36m-win32.whl (10.0 MB view details)

Uploaded CPython 3.6m Windows x86

numpy-1.16.0-cp36-cp36m-manylinux1_x86_64.whl (17.3 MB view details)

Uploaded CPython 3.6m

numpy-1.16.0-cp36-cp36m-manylinux1_i686.whl (14.8 MB view details)

Uploaded CPython 3.6m

numpy-1.16.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (13.9 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.16.0-cp35-cp35m-win_amd64.whl (11.9 MB view details)

Uploaded CPython 3.5m Windows x86-64

numpy-1.16.0-cp35-cp35m-win32.whl (10.0 MB view details)

Uploaded CPython 3.5m Windows x86

numpy-1.16.0-cp35-cp35m-manylinux1_x86_64.whl (17.2 MB view details)

Uploaded CPython 3.5m

numpy-1.16.0-cp35-cp35m-manylinux1_i686.whl (14.7 MB view details)

Uploaded CPython 3.5m

numpy-1.16.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (13.8 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.16.0-cp27-cp27mu-manylinux1_x86_64.whl (17.0 MB view details)

Uploaded CPython 2.7mu

numpy-1.16.0-cp27-cp27mu-manylinux1_i686.whl (14.4 MB view details)

Uploaded CPython 2.7mu

numpy-1.16.0-cp27-cp27m-win_amd64.whl (11.8 MB view details)

Uploaded CPython 2.7m Windows x86-64

numpy-1.16.0-cp27-cp27m-win32.whl (10.0 MB view details)

Uploaded CPython 2.7m Windows x86

numpy-1.16.0-cp27-cp27m-manylinux1_x86_64.whl (17.0 MB view details)

Uploaded CPython 2.7m

numpy-1.16.0-cp27-cp27m-manylinux1_i686.whl (14.4 MB view details)

Uploaded CPython 2.7m

numpy-1.16.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (13.9 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file numpy-1.16.0.zip.

File metadata

  • Download URL: numpy-1.16.0.zip
  • Upload date:
  • Size: 5.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.0.zip
Algorithm Hash digest
SHA256 cb189bd98b2e7ac02df389b6212846ab20661f4bafe16b5a70a6f1728c1cc7cb
MD5 90b5ec981eb9746785f43e9bfc003fed
BLAKE2b-256 04b6d7faa70a3e3eac39f943cc6a6a64ce378259677de516bd899dd9eb8f9b32

See more details on using hashes here.

File details

Details for the file numpy-1.16.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.16.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 11.9 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 64ff21aac30d40c20ba994c94a08d439b8ced3b9c704af897e9e4ba09d10e62c
MD5 22af7b6ff2da30fca2334886fdbf8573
BLAKE2b-256 dd3e0d7a914ee6cceef588dd83b18e257dc474ac67028a8d340dfec644878128

See more details on using hashes here.

File details

Details for the file numpy-1.16.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: numpy-1.16.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 10.0 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 fea682f6ddc09517df0e6d5caad9613c6d91a42232aeb082df67e4d205de19cc
MD5 25da2b41f81d4862bb36a07218477ea6
BLAKE2b-256 94b5f4bdf7bce5f8b35a2a83a0b70c545ca061a50b54724b5287505064906b14

See more details on using hashes here.

File details

Details for the file numpy-1.16.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.16.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 17.3 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b19a47ff1bd2fca0cacdfa830c967746764c32dca6a0c0328d9c893f4bfe2f6b
MD5 8d87c0b1f8d7ad46b1976328d6c66cef
BLAKE2b-256 3d1062224c551acfd3a3583ad16d1e0f1c9e9c333e74479dc51977c31836119c

See more details on using hashes here.

File details

Details for the file numpy-1.16.0-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.16.0-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 14.8 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.0-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 c6251e0f0ecac53ba2b99d9f0cc16fa9021914a78869c38213c436ba343641f0
MD5 d424c537c28510340f06a317608d7743
BLAKE2b-256 d4c07ff4636c2a4bc97a8dfd452c7529e4b3700b7c031d6e3f21de2a98d4ee33

See more details on using hashes here.

File details

Details for the file numpy-1.16.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.16.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 32af2bcf4bb7631dac19736a6e092ec9715e770dcaa1f85fcd99dec5040b2a4d
MD5 748fe792a69f79b0c3a926139b23bdbc
BLAKE2b-256 830d1dd2f96eff7f5df22166066f7dbd213428d46f78f8ed9dea8345ca1a1f51

See more details on using hashes here.

File details

Details for the file numpy-1.16.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.16.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 11.9 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 ef4ae41add536cb825d8aa029c15ef510aead06ea5b68daea64f0b9ecbff17db
MD5 b1e5a08c6a85c8a51f8039b3dc3dad3d
BLAKE2b-256 317e8905636f7e4f9b9d7078aa0e701500634f832f145855a11beb098d3b0fb1

See more details on using hashes here.

File details

Details for the file numpy-1.16.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: numpy-1.16.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 10.0 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 95c830b09626508f7808ce7f1344fb98068e63143e6050e5dc3063142fc60007
MD5 2ce0cc7d22e3f94e51315c1df4fd81bd
BLAKE2b-256 6eef1402e6016ba0aa19463198be521b265c6bbe4ee892a7f42385d29e8d894d

See more details on using hashes here.

File details

Details for the file numpy-1.16.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.16.0-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 17.3 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2d279bd99329e72c30937bdef82b6dc7779c7607c5a379bab1bf76be1f4c1422
MD5 5877c113fcd82198ad2285e3074a089c
BLAKE2b-256 7b7454c5f9bb9bd4dae27a61ec1b39076a39d359b3fb7ba15da79ef23858a9d8

See more details on using hashes here.

File details

Details for the file numpy-1.16.0-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.16.0-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 14.8 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.0-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 f1232f98a6bbd6d1678249f94028bccc541bbc306aa5c4e1471a881b0e5a3409
MD5 26ceb7aa63fa82bc444e69156444fe6f
BLAKE2b-256 3304b7d3f32f6be7b5d3a9b884f4b281b10b77f8d77c11006cf7e3887077579d

See more details on using hashes here.

File details

Details for the file numpy-1.16.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.16.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 00a458d6821b1e87be873f2126d5646b901047a7480e8ae9773ecf214f0e19f3
MD5 809ed96a113cf46e81ae50c9703e7a5c
BLAKE2b-256 e450380aebcda065f62febb99fd5a7253d27d9f10719c5d90938ee642b4fee54

See more details on using hashes here.

File details

Details for the file numpy-1.16.0-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.16.0-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 11.9 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 c40cb17188f6ae3c5b6efc6f0fd43a7ddd219b7807fe179e71027849a9b91afc
MD5 4ed0e6114562eefb75da7aadc3db4f8a
BLAKE2b-256 b1a58db6c28b20f726bef80e8db46fe60dbe8ed37191c3dd70287f694bb20c05

See more details on using hashes here.

File details

Details for the file numpy-1.16.0-cp35-cp35m-win32.whl.

File metadata

  • Download URL: numpy-1.16.0-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 10.0 MB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.0-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 0470c5dc32212a08ebc2405f32e8ceb9a5b1c8ac61a2daf9835ec0856a220495
MD5 608e1d02d014bda5c4081881a25f9fbc
BLAKE2b-256 8bf928a9f39bb75b3c371dc48c9ddee64f6ce7fc6397fdc4ab2abb68d674ad7d

See more details on using hashes here.

File details

Details for the file numpy-1.16.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.16.0-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 17.2 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 3e90a9fce378114b6c2fc01fff7423300515c7b54b7cc71b02a22bc0bd7dfdd8
MD5 ee52de6e269576f468285b0f45fe9618
BLAKE2b-256 64242e9c72f44cec8c872000d78c54230e40550c494647e352d1d06724cdaee6

See more details on using hashes here.

File details

Details for the file numpy-1.16.0-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.16.0-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 14.7 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.0-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 a1dd8221f0e69038748f47b8bb3248d0b9ecdf13fe837440951c3d5ff72639bb
MD5 968ea61a147bd500b5d858b91ccf709d
BLAKE2b-256 296cef26c395372b2b17b8b1354ac7bbc92fbe862346f96c852f18875374a1ea

See more details on using hashes here.

File details

Details for the file numpy-1.16.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.16.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 96e49a0c82b4e3130093002f625545104037c2d25866fa2e0c90d6e54f5a1fbc
MD5 048918abcf3936c947d06f1ee629757e
BLAKE2b-256 5d372b3c5ee232635a3c3ed41f454395e9714837bf0745b1b76f3fae57881c86

See more details on using hashes here.

File details

Details for the file numpy-1.16.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.16.0-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 17.0 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 24a9c287a4a1c427c2d45bf7c4fc6180c52a08fa0990d4c94e4c86a9b1e23ba5
MD5 c47496091e10e31eeb9d9b07f3136237
BLAKE2b-256 9f85163127d3fb0573deb9eca947cfc73aa3618eaaf8656501460574471d114a

See more details on using hashes here.

File details

Details for the file numpy-1.16.0-cp27-cp27mu-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.16.0-cp27-cp27mu-manylinux1_i686.whl
  • Upload date:
  • Size: 14.4 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.0-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 803b2af862dcad6c11231ea3cd1015d1293efd6c87088be33d713a9b23e9e419
MD5 7253e6e78dc1ae134abcf40201ca73ad
BLAKE2b-256 70fbe8928eaf79755412b0ae7828cc48f66eb221ab6c4946861e7af3849d098e

See more details on using hashes here.

File details

Details for the file numpy-1.16.0-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.16.0-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 11.8 MB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.0-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 25600e8901012180a1b7cd1ac3e27e7793586ecd432383191929ac2edf37ff5d
MD5 9a53cf0c5e77f02ea9b5ff3587a1f8ac
BLAKE2b-256 3e2a59c727ba3a372cbcc6f4fb8ab9cdba5870dff6afa60bf6a5370c1a76a424

See more details on using hashes here.

File details

Details for the file numpy-1.16.0-cp27-cp27m-win32.whl.

File metadata

  • Download URL: numpy-1.16.0-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 10.0 MB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.0-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 5774d49516c37fd3fc1f232e033d2b152f3323ca4c7bfefd7277e4c67f3c08b4
MD5 63648ca2ba0dae7f7f57cc8fc87f0fba
BLAKE2b-256 a87cd78396c17f688085ee0114c8f01ae5c6e06093488631288df127592da61f

See more details on using hashes here.

File details

Details for the file numpy-1.16.0-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.16.0-cp27-cp27m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 17.0 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.0-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f00a2c21f60284e024bba351875f3501c6d5817d64997a0afe4f4355161a8889
MD5 66d2e3fee4504c371da147a56fa9f900
BLAKE2b-256 8307eb07c1dfb13e681af8862d10b3ac031fafd4270fd41d11a81eafbbbda42b

See more details on using hashes here.

File details

Details for the file numpy-1.16.0-cp27-cp27m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.16.0-cp27-cp27m-manylinux1_i686.whl
  • Upload date:
  • Size: 14.4 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.0-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 be43df2c563e264b38e3318574d80fc8f365df3fb745270934d2dbe54e006f41
MD5 a1afdd521bf4480f4a5f43f39a345a80
BLAKE2b-256 1c575d9daa01e020207f44146b94c34ba121f03d9eeebc8286ea9059627db42d

See more details on using hashes here.

File details

Details for the file numpy-1.16.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.16.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 a80ecac5664f420556a725a5646f2d1c60a7c0489d68a38b5056393e949e27ac
MD5 67d46af4e62111285f27a9c5731f16f9
BLAKE2b-256 e497167eb80dadcf2905b58d66ada6c128d3ec5e8595beb02457b881e7399be3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page