Skip to main content

NumPy is the fundamental package for array computing with Python.

Project description

It provides:

  • a powerful N-dimensional array object

  • sophisticated (broadcasting) functions

  • tools for integrating C/C++ and Fortran code

  • useful linear algebra, Fourier transform, and random number capabilities

  • and much more

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.

All NumPy wheels distributed on PyPI are BSD licensed.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.16.2.zip (5.1 MB view details)

Uploaded Source

Built Distributions

numpy-1.16.2-cp37-cp37m-win_amd64.whl (11.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

numpy-1.16.2-cp37-cp37m-win32.whl (10.0 MB view details)

Uploaded CPython 3.7m Windows x86

numpy-1.16.2-cp37-cp37m-manylinux1_x86_64.whl (17.3 MB view details)

Uploaded CPython 3.7m

numpy-1.16.2-cp37-cp37m-manylinux1_i686.whl (14.8 MB view details)

Uploaded CPython 3.7m

numpy-1.16.2-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (13.9 MB view details)

Uploaded CPython 3.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.16.2-cp36-cp36m-win_amd64.whl (11.9 MB view details)

Uploaded CPython 3.6m Windows x86-64

numpy-1.16.2-cp36-cp36m-win32.whl (10.0 MB view details)

Uploaded CPython 3.6m Windows x86

numpy-1.16.2-cp36-cp36m-manylinux1_x86_64.whl (17.3 MB view details)

Uploaded CPython 3.6m

numpy-1.16.2-cp36-cp36m-manylinux1_i686.whl (14.8 MB view details)

Uploaded CPython 3.6m

numpy-1.16.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (13.9 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.16.2-cp35-cp35m-win_amd64.whl (11.9 MB view details)

Uploaded CPython 3.5m Windows x86-64

numpy-1.16.2-cp35-cp35m-win32.whl (10.0 MB view details)

Uploaded CPython 3.5m Windows x86

numpy-1.16.2-cp35-cp35m-manylinux1_x86_64.whl (17.2 MB view details)

Uploaded CPython 3.5m

numpy-1.16.2-cp35-cp35m-manylinux1_i686.whl (14.7 MB view details)

Uploaded CPython 3.5m

numpy-1.16.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (13.9 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.16.2-cp27-cp27mu-manylinux1_x86_64.whl (17.0 MB view details)

Uploaded CPython 2.7mu

numpy-1.16.2-cp27-cp27mu-manylinux1_i686.whl (14.5 MB view details)

Uploaded CPython 2.7mu

numpy-1.16.2-cp27-cp27m-win_amd64.whl (11.8 MB view details)

Uploaded CPython 2.7m Windows x86-64

numpy-1.16.2-cp27-cp27m-win32.whl (10.0 MB view details)

Uploaded CPython 2.7m Windows x86

numpy-1.16.2-cp27-cp27m-manylinux1_x86_64.whl (17.0 MB view details)

Uploaded CPython 2.7m

numpy-1.16.2-cp27-cp27m-manylinux1_i686.whl (14.5 MB view details)

Uploaded CPython 2.7m

numpy-1.16.2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (13.9 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file numpy-1.16.2.zip.

File metadata

  • Download URL: numpy-1.16.2.zip
  • Upload date:
  • Size: 5.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.2.zip
Algorithm Hash digest
SHA256 6c692e3879dde0b67a9dc78f9bfb6f61c666b4562fd8619632d7043fb5b691b0
MD5 ec99ec2763a6be3817675f92b8847d3c
BLAKE2b-256 cf8d6345b4f32b37945fedc1e027e83970005fc9c699068d2f566b82826515f2

See more details on using hashes here.

File details

Details for the file numpy-1.16.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.16.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 11.9 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 4061c79ac2230594a7419151028e808239450e676c39e58302ad296232e3c2e8
MD5 a1dcfcbe4993d77357bb2213aacf9e82
BLAKE2b-256 3a3c515afabfe4f29bfc0a67037efaf518c33d0076b32d22ba865241cee295c4

See more details on using hashes here.

File details

Details for the file numpy-1.16.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: numpy-1.16.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 10.0 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 dc235bf29a406dfda5790d01b998a1c01d7d37f449128c0b1b7d1c89a84fae8b
MD5 38d9fccdc6ae4420c9ee5303f1298974
BLAKE2b-256 61beb4d697563d4a211596a350414a87612204a8bb987c4c1b34598cd4904f55

See more details on using hashes here.

File details

Details for the file numpy-1.16.2-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.16.2-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 17.3 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.2-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9f4cd7832b35e736b739be03b55875706c8c3e5fe334a06210f1a61e5c2c8ca5
MD5 9cac844e1fc29972e63cb80512379805
BLAKE2b-256 91e76c780e612d245cca62bc3ba8e263038f7c144a96a54f877f3714a0e8427e

See more details on using hashes here.

File details

Details for the file numpy-1.16.2-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.16.2-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 14.8 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.2-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 7a78cc4ddb253a55971115f8320a7ce28fd23a065fc33166d601f51760eecfa9
MD5 4fce2fe91abe1e8b09232c5aaafa484a
BLAKE2b-256 668f2f32f7283aae2a351feb5b39f0df53d62ee2845479ce5d2a3a5da6717d60

See more details on using hashes here.

File details

Details for the file numpy-1.16.2-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.16.2-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 80a41edf64a3626e729a62df7dd278474fc1726836552b67a8c6396fd7e86760
MD5 ee8c8d67fa75a2c4a733fc491590419a
BLAKE2b-256 a66fcb20ccd8f0f8581e0e090775c0e3c3e335b037818416e6fa945d924397d2

See more details on using hashes here.

File details

Details for the file numpy-1.16.2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.16.2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 11.9 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 d20c0360940f30003a23c0adae2fe50a0a04f3e48dc05c298493b51fd6280197
MD5 83ddd33ccf7a434895ade64199424a07
BLAKE2b-256 ed29d97b6252591da5f8add0d25eecda296ea72729a0aad7998edba1981b47c8

See more details on using hashes here.

File details

Details for the file numpy-1.16.2-cp36-cp36m-win32.whl.

File metadata

  • Download URL: numpy-1.16.2-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 10.0 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.2-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 22752cd809272671b273bb86df0f505f505a12368a3a5fc0aa811c7ece4dfd5c
MD5 79bbaffa096bbbaf42c029bf85df5ac2
BLAKE2b-256 b38441c7af95bab850819bddbc13e3e10317dacd3e28e2a0a5f14d8dbdc1c725

See more details on using hashes here.

File details

Details for the file numpy-1.16.2-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.16.2-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 17.3 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.2-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 23cc40313036cffd5d1873ef3ce2e949bdee0646c5d6f375bf7ee4f368db2511
MD5 990a95c5f6bb34ed5588c996890bf9c7
BLAKE2b-256 35d54f8410ac303e690144f0a0603c4b8fd3b986feb2749c435f7cdbb288f17e

See more details on using hashes here.

File details

Details for the file numpy-1.16.2-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.16.2-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 14.8 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.2-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 3f25f6c7b0d000017e5ac55977a3999b0b1a74491eacb3c1aa716f0e01f6dcd1
MD5 ac1e770a95ff3f8a47f74e64bd034768
BLAKE2b-256 5eaa2b8df68ba219718ce016f624610b08179a3f9ed2566b2c2b61224c58db5d

See more details on using hashes here.

File details

Details for the file numpy-1.16.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.16.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 bd2834d496ba9b1bdda3a6cf3de4dc0d4a0e7be306335940402ec95132ad063d
MD5 4f26f55f35c58b4228cb3f60cb98f32d
BLAKE2b-256 930e30aaa357c3065957344b240482818eef31d4080f73dfa5f1ef7dcd8744d2

See more details on using hashes here.

File details

Details for the file numpy-1.16.2-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.16.2-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 11.9 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.2-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 2b0b118ff547fecabc247a2668f48f48b3b1f7d63676ebc5be7352a5fd9e85a5
MD5 ce7abc3bb59c549ffe3b56984a291eaa
BLAKE2b-256 0bbe7933dd42e95044624ed8ea200a392a965b6bf9e89ea36944e59ddbd579c2

See more details on using hashes here.

File details

Details for the file numpy-1.16.2-cp35-cp35m-win32.whl.

File metadata

  • Download URL: numpy-1.16.2-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 10.0 MB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.2-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 3a0bd1edf64f6a911427b608a894111f9fcdb25284f724016f34a84c9a3a6ea9
MD5 f8fa8bda14131b2714c42b775dfde349
BLAKE2b-256 3fa2e8762e3c31366c53bf122afbc23edc150881f8d87c6ca23dc2e2b21e4cbe

See more details on using hashes here.

File details

Details for the file numpy-1.16.2-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.16.2-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 17.2 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.2-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 893f4d75255f25a7b8516feb5766c6b63c54780323b9bd4bc51cdd7efc943c73
MD5 ca9953287417064b44a47a6ec92c797c
BLAKE2b-256 e3184f013c3c3051f4e0ffbaa4bf247050d6d5e527fe9cb1907f5975b172f23f

See more details on using hashes here.

File details

Details for the file numpy-1.16.2-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.16.2-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 14.7 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.2-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 d3b3ed87061d2314ff3659bb73896e622252da52558f2380f12c421fbdee3d89
MD5 ca025ce06f5bc7b81627bc5bf523d589
BLAKE2b-256 45047a738e489a25a9638520a43a0cbfcc4be3ed056266e3110a330a905b36b5

See more details on using hashes here.

File details

Details for the file numpy-1.16.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.16.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 6f65e37b5a331df950ef6ff03bd4136b3c0bbcf44d4b8e99135d68a537711b5a
MD5 15bbe3a9ac6024ac631ed420c04fde47
BLAKE2b-256 0e65a27186c1692901f7b451572857f6d8d0031b6928500fa479c30a489afeed

See more details on using hashes here.

File details

Details for the file numpy-1.16.2-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.16.2-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 17.0 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.2-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 fb3c83554f39f48f3fa3123b9c24aecf681b1c289f9334f8215c1d3c8e2f6e5b
MD5 5125ec60d3895d89e5d6d71d9e21b349
BLAKE2b-256 c4338ec8dcdb4ede5d453047bbdbd01916dbaccdb63e98bba60989718f5f0876

See more details on using hashes here.

File details

Details for the file numpy-1.16.2-cp27-cp27mu-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.16.2-cp27-cp27mu-manylinux1_i686.whl
  • Upload date:
  • Size: 14.5 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.2-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 9f1d4865436f794accdabadc57a8395bd3faa755449b4f65b88b7df65ae05f89
MD5 62b92da3423dd59230c9369a43299506
BLAKE2b-256 5b0fa93ea6864511e121a31fb15ac6fcd85fcaef64ce1f995661cc29ea5f1814

See more details on using hashes here.

File details

Details for the file numpy-1.16.2-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.16.2-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 11.8 MB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.2-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 adab43bf657488300d3aeeb8030d7f024fcc86e3a9b8848741ea2ea903e56610
MD5 60da6aed692fc96c97efde2daca52d6f
BLAKE2b-256 7f65a5a0ca3695bb3358faef4bd2131c8174aef78c4b2182d8cae404312bcc26

See more details on using hashes here.

File details

Details for the file numpy-1.16.2-cp27-cp27m-win32.whl.

File metadata

  • Download URL: numpy-1.16.2-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 10.0 MB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.2-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 62be044cd58da2a947b7e7b2252a10b42920df9520fc3d39f5c4c70d5460b8ba
MD5 1242a10df37701abe8c8afc59809e1ac
BLAKE2b-256 7c61e0affb3a94043d493cbd3abaeb1ed75d9b2a2426ecdfd3bc985f75df1803

See more details on using hashes here.

File details

Details for the file numpy-1.16.2-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.16.2-cp27-cp27m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 17.0 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.2-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 560ceaa24f971ab37dede7ba030fc5d8fa173305d94365f814d9523ffd5d5916
MD5 0756e1901d81033143ad55583118598e
BLAKE2b-256 659ef7fe595f62b8f7fcc154afb20df19b58ddf2723ca2e21dbbf749cd1b8e0c

See more details on using hashes here.

File details

Details for the file numpy-1.16.2-cp27-cp27m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.16.2-cp27-cp27m-manylinux1_i686.whl
  • Upload date:
  • Size: 14.5 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.2-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 1980f8d84548d74921685f68096911585fee393975f53797614b34d4f409b6da
MD5 cfc866763a75e7cb247c189e141e4506
BLAKE2b-256 6eb93bab7c9a5fc02b6c8b659502c3a4c1779f0faf65b1c59b34ef2ae5fa94c6

See more details on using hashes here.

File details

Details for the file numpy-1.16.2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.16.2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 972ea92f9c1b54cc1c1a3d8508e326c0114aaf0f34996772a30f3f52b73b942f
MD5 a166c7e850f9375552f9950ba95f3a8a
BLAKE2b-256 bc903e71b5392bd81d8559917ee38857bb2e4b92c88e87211a68e339127b86f5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page