Skip to main content

NumPy is the fundamental package for array computing with Python.

Project description

It provides:

  • a powerful N-dimensional array object

  • sophisticated (broadcasting) functions

  • tools for integrating C/C++ and Fortran code

  • useful linear algebra, Fourier transform, and random number capabilities

  • and much more

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.

All NumPy wheels distributed on PyPI are BSD licensed.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.17.0.zip (6.5 MB view details)

Uploaded Source

Built Distributions

numpy-1.17.0-cp37-cp37m-win_amd64.whl (12.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

numpy-1.17.0-cp37-cp37m-win32.whl (10.8 MB view details)

Uploaded CPython 3.7m Windows x86

numpy-1.17.0-cp37-cp37m-manylinux1_x86_64.whl (20.3 MB view details)

Uploaded CPython 3.7m

numpy-1.17.0-cp37-cp37m-manylinux1_i686.whl (17.6 MB view details)

Uploaded CPython 3.7m

numpy-1.17.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (15.0 MB view details)

Uploaded CPython 3.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.17.0-cp36-cp36m-win_amd64.whl (12.8 MB view details)

Uploaded CPython 3.6m Windows x86-64

numpy-1.17.0-cp36-cp36m-win32.whl (10.8 MB view details)

Uploaded CPython 3.6m Windows x86

numpy-1.17.0-cp36-cp36m-manylinux1_x86_64.whl (20.4 MB view details)

Uploaded CPython 3.6m

numpy-1.17.0-cp36-cp36m-manylinux1_i686.whl (17.7 MB view details)

Uploaded CPython 3.6m

numpy-1.17.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (15.0 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.17.0-cp35-cp35m-win_amd64.whl (12.7 MB view details)

Uploaded CPython 3.5m Windows x86-64

numpy-1.17.0-cp35-cp35m-win32.whl (10.7 MB view details)

Uploaded CPython 3.5m Windows x86

numpy-1.17.0-cp35-cp35m-manylinux1_x86_64.whl (20.2 MB view details)

Uploaded CPython 3.5m

numpy-1.17.0-cp35-cp35m-manylinux1_i686.whl (17.5 MB view details)

Uploaded CPython 3.5m

numpy-1.17.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (14.9 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file numpy-1.17.0.zip.

File metadata

  • Download URL: numpy-1.17.0.zip
  • Upload date:
  • Size: 6.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.0.zip
Algorithm Hash digest
SHA256 951fefe2fb73f84c620bec4e001e80a80ddaa1b84dce244ded7f1e0cbe0ed34a
MD5 aed49b31bcb44ec73b8155be78566135
BLAKE2b-256 da321b8f2bb5fb50e4db68543eb85ce37b9fa6660cd05b58bddfafafa7ed62da

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.17.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.17.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 12.8 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 be39cca66cc6806652da97103605c7b65ee4442c638f04ff064a7efd9a81d50a
MD5 1ffa1bc110de363748a849a35126d9ff
BLAKE2b-256 262673ba03b2206371cdef62afebb877e9ba90a1f0dc3d9de22680a3970f5a50

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.17.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: numpy-1.17.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 10.8 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 ec0c56eae6cee6299f41e780a0280318a93db519bbb2906103c43f3e2be1206c
MD5 0da9af1ac3832ae8b94f5fdce31c8c7d
BLAKE2b-256 f93fd75fc983cc420b2acb5fae446b950e2dc9e5395a79fa76859d2528352d2c

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.17.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.17.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 20.3 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8d36f7c53ae741e23f54793ffefb2912340b800476eb0a831c6eb602e204c5c4
MD5 a245e8fc884fcd6ad1c53c322496cace
BLAKE2b-256 054b55cfbfd3e5e85016eeef9f21c0ec809d978706a0d60b62cc28aeec8c792f

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.17.0-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.17.0-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 17.6 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.0-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 312bb18e95218bedc3563f26fcc9c1c6bfaaf9d453d15942c0839acdd7e4c473
MD5 49ae9d7440e5dbabf3e02eba5b4bb8cd
BLAKE2b-256 1364121de962de9bc7da56c5c70b088727b1c04d12ab58b7abca100953d95968

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.17.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.17.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 f4e4612de60a4f1c4d06c8c2857cdcb2b8b5289189a12053f37d3f41f06c60d0
MD5 c6501eed55a840b2c81b211d6cf5065e
BLAKE2b-256 c14b78119133136c20e5ad2e01bf72b0633241defd619939908223cd394a9c32

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.17.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.17.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 12.8 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 c3ab2d835b95ccb59d11dfcd56eb0480daea57cdf95d686d22eff35584bc4554
MD5 b7efb94a9cf4cc864ea546fb21a4d6bf
BLAKE2b-256 b7c1a58630a439aa10a285169b4a122bc9f7a9a4392e4ec39602f0a60b2693db

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.17.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: numpy-1.17.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 10.8 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 03e311b0a4c9f5755da7d52161280c6a78406c7be5c5cc7facfbcebb641efb7e
MD5 feeecc8ea0bbc37b2f0be447b32a478f
BLAKE2b-256 94d5fd11304513bee27cca036c1b68b3300f49b4c73d3a1c69e32dc1e325cc68

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.17.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.17.0-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 20.4 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9588c6b4157f493edeb9378788dcd02cb9e6a6aeaa518b511a1c79d06cbd8094
MD5 4db1ecda4fbc202722774599cb434378
BLAKE2b-256 19b9bda9781f0a74b90ebd2e046fde1196182900bd4a8e1ea503d3ffebc50e7c

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.17.0-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.17.0-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 17.7 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.0-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 eb0fc4a492cb896346c9e2c7a22eae3e766d407df3eb20f4ce027f23f76e4c54
MD5 c996484b56aefecfe3626bcaca88a187
BLAKE2b-256 764bcf8e724224715aed1f8cd38b5b5bc0dc758b4bd6fb608b528171bd418d85

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.17.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.17.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 464b1c48baf49e8505b1bb754c47a013d2c305c5b14269b5c85ea0625b6a988a
MD5 101e88a9870a5046536f71d77d0a7f5c
BLAKE2b-256 bee845079ae05c4dda4a67bc51578ae5e75feda0a79c2836d477d676e7a58efb

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.17.0-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.17.0-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 12.7 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 5adfde7bd3ee4864536e230bcab1c673f866736698724d5d28c11a4d63672658
MD5 e919d45495558d93275ef4ab724f767a
BLAKE2b-256 e04649aea53340775e5294dacc8072062b5a1c21dd27746cb336afa395abb70c

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.17.0-cp35-cp35m-win32.whl.

File metadata

  • Download URL: numpy-1.17.0-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 10.7 MB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.0-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 0cdd229a53d2720d21175012ab0599665f8c9588b3b8ffa6095dd7b90f0691dd
MD5 ab16f4b7f83e64113bf118ae3a9414b9
BLAKE2b-256 7f50d772e78172520324f835efd1ea77d1b339fe9fa5c0db3de00750bc07e64b

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.17.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.17.0-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 20.2 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7724e9e31ee72389d522b88c0d4201f24edc34277999701ccd4a5392e7d8af61
MD5 71066029b28fa03b897fd960be6dc6a9
BLAKE2b-256 6925eef8d362bd216b11e7d005331a3cca3d19b0aa57569bde680070109b745c

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.17.0-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.17.0-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 17.5 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.0-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 9ce8300950f2f1d29d0e49c28ebfff0d2f1e2a7444830fbb0b913c7c08f31511
MD5 526c60c36c61b7d30e6a50ffad3e81a2
BLAKE2b-256 01c4850d2a34f2bfd043fa6a8231392b7803d14b940bc188e3eeccd60c60b07f

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.17.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.17.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 910d2272403c2ea8a52d9159827dc9f7c27fb4b263749dca884e2e4a8af3b302
MD5 5ac469e3c2cd9b34c2a906d48544f491
BLAKE2b-256 4a2ecf0a2fea6d97604a0e058e804b50d589c31b360b317be9f5c126b22a560e

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page