Skip to main content

NumPy is the fundamental package for array computing with Python.

Project description

It provides:

  • a powerful N-dimensional array object

  • sophisticated (broadcasting) functions

  • tools for integrating C/C++ and Fortran code

  • useful linear algebra, Fourier transform, and random number capabilities

  • and much more

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.

All NumPy wheels distributed on PyPI are BSD licensed.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.17.1.zip (6.5 MB view details)

Uploaded Source

Built Distributions

numpy-1.17.1-cp37-cp37m-win_amd64.whl (12.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

numpy-1.17.1-cp37-cp37m-win32.whl (10.8 MB view details)

Uploaded CPython 3.7m Windows x86

numpy-1.17.1-cp37-cp37m-manylinux1_x86_64.whl (20.3 MB view details)

Uploaded CPython 3.7m

numpy-1.17.1-cp37-cp37m-manylinux1_i686.whl (17.6 MB view details)

Uploaded CPython 3.7m

numpy-1.17.1-cp37-cp37m-macosx_10_9_x86_64.whl (15.0 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

numpy-1.17.1-cp36-cp36m-win_amd64.whl (12.8 MB view details)

Uploaded CPython 3.6m Windows x86-64

numpy-1.17.1-cp36-cp36m-win32.whl (10.8 MB view details)

Uploaded CPython 3.6m Windows x86

numpy-1.17.1-cp36-cp36m-manylinux1_x86_64.whl (20.4 MB view details)

Uploaded CPython 3.6m

numpy-1.17.1-cp36-cp36m-manylinux1_i686.whl (17.6 MB view details)

Uploaded CPython 3.6m

numpy-1.17.1-cp36-cp36m-macosx_10_9_x86_64.whl (15.0 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

numpy-1.17.1-cp35-cp35m-win_amd64.whl (12.7 MB view details)

Uploaded CPython 3.5m Windows x86-64

numpy-1.17.1-cp35-cp35m-win32.whl (10.7 MB view details)

Uploaded CPython 3.5m Windows x86

numpy-1.17.1-cp35-cp35m-manylinux1_x86_64.whl (20.1 MB view details)

Uploaded CPython 3.5m

numpy-1.17.1-cp35-cp35m-manylinux1_i686.whl (17.5 MB view details)

Uploaded CPython 3.5m

numpy-1.17.1-cp35-cp35m-macosx_10_9_x86_64.whl (14.9 MB view details)

Uploaded CPython 3.5m macOS 10.9+ x86-64

File details

Details for the file numpy-1.17.1.zip.

File metadata

  • Download URL: numpy-1.17.1.zip
  • Upload date:
  • Size: 6.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.1.zip
Algorithm Hash digest
SHA256 f11331530f0eff69a758d62c2461cd98cdc2eae0147279d8fc86e0464eb7e8ca
MD5 cad292965675fbe8d5fbae3009ab8b58
BLAKE2b-256 cb7996df883cd6df0c86cb010e6f4ff790b7a30a45016a9509c94ea72c8695cd

See more details on using hashes here.

File details

Details for the file numpy-1.17.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.17.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 12.8 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 fd5e830d4dc31658d61a6452cd3e842213594d8c15578cdae6829e36ad9c0930
MD5 5e022462aedaac5e9d7f5b09a8f7e3bb
BLAKE2b-256 cb4105fbf6944b098eb9d53e8a29a9dbfa20a7448f3254fb71499746a29a1b2d

See more details on using hashes here.

File details

Details for the file numpy-1.17.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: numpy-1.17.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 10.8 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 fa5f2a8ef1e07ba258dc07d4dd246de23ef4ab920ae0f3fa2a1cc5e90f0f1888
MD5 dddef61754e2ddb46cce6a1656d35eb4
BLAKE2b-256 c313a991b874825a195aefb9cf53a1a632099622237d8701dbd4a18804fa5144

See more details on using hashes here.

File details

Details for the file numpy-1.17.1-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.17.1-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 20.3 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 93050e73c446c82065b7410221b07682e475ac51887cd9368227a5d944afae80
MD5 c711188365a7677334ddc754778d4822
BLAKE2b-256 25eb4ecf6b13897391cb07a4231e9d9c671b55dfbbf6f4a514a1a0c594f2d8d9

See more details on using hashes here.

File details

Details for the file numpy-1.17.1-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.17.1-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 17.6 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.1-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 4c166dcb0fff7cb3c0bbc682dfb5061852a2547efb6222e043a7932828c08fb5
MD5 c4c09c737c19d86829e4f2268d2c8991
BLAKE2b-256 af0ce2628013cc2a9959742a17ffb1baf74af0c4414cade6f27a50a441a881a9

See more details on using hashes here.

File details

Details for the file numpy-1.17.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.17.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 15.0 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8cb4b6ae45aad6d26712a1ce0a3f2556c5e1484867f9649e03496e45d6a5eba4
MD5 7e723a8f451eaa091f09a4df09bdf776
BLAKE2b-256 8d4bb6339340169862935ef5757db7e5869af7576f03148d069869edbd523ef2

See more details on using hashes here.

File details

Details for the file numpy-1.17.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.17.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 12.8 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 8c2d98d0623bd63fb883b65256c00454d5f53127a5a7bcdaa8bdc582814e8cb4
MD5 0799ddcbb5d28d789d613558bce33b30
BLAKE2b-256 87f4682e88f2b5c1d49a8011fadee57eb3c13f55f156536597a625109261314d

See more details on using hashes here.

File details

Details for the file numpy-1.17.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: numpy-1.17.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 10.8 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 2c0984a01ddd0aeec89f0ce46ef21d64761048cd76c0074d0658c91f9131f154
MD5 e1b9c4c90df2b84674dbd6c3875d44b1
BLAKE2b-256 0c75092863498ed6d3e38dcab87d4446a3e3574a63c676ceeb9ad678816669b3

See more details on using hashes here.

File details

Details for the file numpy-1.17.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.17.1-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 20.4 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 fb6178b0488b0ce6a54bc4accbdf5225e937383586555604155d64773f6beb2b
MD5 c50ee655b018c315e75a8cb40c771225
BLAKE2b-256 759257179ed45307ec6179e344231c47da7f3f3da9e2eee5c8ab506bd279ce4e

See more details on using hashes here.

File details

Details for the file numpy-1.17.1-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.17.1-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 17.6 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.1-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 0fbfa98c5d5c3c6489cc1e852ec94395d51f35d9ebe70c6850e47f465038cdf4
MD5 794d982a831762918eba7fa5cf8f16e8
BLAKE2b-256 34342e2b064292a568a6d8314d8371ebfd89de01672cc4d62ad02c8744c3658a

See more details on using hashes here.

File details

Details for the file numpy-1.17.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.17.1-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 15.0 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c304b2221f33489cd15a915237a84cdfe9420d7e4d4828c78a0820f9d990395c
MD5 a7d523ddbe70107016026da5474b7245
BLAKE2b-256 e34774ccefc8e6e28c4050acf282eaaefe59dac8969736fd16ea064d90e40392

See more details on using hashes here.

File details

Details for the file numpy-1.17.1-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.17.1-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 12.7 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.1-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 03f2ebcbffcce2dec8860633b89a93e80c6a239d21a77ae8b241450dc21e8c35
MD5 086a59eab8e5b8ebbf10755b8a2db677
BLAKE2b-256 bc0a53ef8c2ea818411622fd223bf4cb7f3606a70d6082dfa06584b380e3a86e

See more details on using hashes here.

File details

Details for the file numpy-1.17.1-cp35-cp35m-win32.whl.

File metadata

  • Download URL: numpy-1.17.1-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 10.7 MB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.1-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 1c841033f4fe6801648180c3033c45b3235a8bbd09bc7249010f99ea27bb6790
MD5 55070ccaeabbe5036c5a577f4e4cc2b0
BLAKE2b-256 5be9e64c05d39d3feefbc2677ffbe331b7b63a41129218a39b0bd912187cbd95

See more details on using hashes here.

File details

Details for the file numpy-1.17.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.17.1-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 20.1 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 bede70fd8699695363f39e86c1e869b2c8b74fb5ef135a67b9e1eeebff50322a
MD5 b24c5726f07d5f71d244baaa513af920
BLAKE2b-256 d4647619774f0bd8ef364d46a5df8eb1bc78784cd787324b9624f6793e72f787

See more details on using hashes here.

File details

Details for the file numpy-1.17.1-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.17.1-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 17.5 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.1-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 a3f6b3024f8826d8b1490e6e2a9b99e841cd2c375791b1df62991bd8f4c00b89
MD5 5547039914b3f9541137e8cd9fab57c7
BLAKE2b-256 abb004fcc8f38c6dee03b631a03493cf2d6e731dbb25174fda823a3af275a510

See more details on using hashes here.

File details

Details for the file numpy-1.17.1-cp35-cp35m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.17.1-cp35-cp35m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 14.9 MB
  • Tags: CPython 3.5m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.1-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 078c8025da5ab9e8657edc9c2a1e9642e06e953bc7baa2e65c1aa9d9dfb7e98b
MD5 99708c771ef1efe283ecfd6e30698e1a
BLAKE2b-256 e2a4705c2e14f5d1e9bfe70ab02865158713b936710b13cfa165feb8805273a2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page