Skip to main content

NumPy is the fundamental package for array computing with Python.

Project description

It provides:

  • a powerful N-dimensional array object

  • sophisticated (broadcasting) functions

  • tools for integrating C/C++ and Fortran code

  • useful linear algebra, Fourier transform, and random number capabilities

  • and much more

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.

All NumPy wheels distributed on PyPI are BSD licensed.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.17.2.zip (6.5 MB view details)

Uploaded Source

Built Distributions

numpy-1.17.2-cp37-cp37m-win_amd64.whl (12.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

numpy-1.17.2-cp37-cp37m-win32.whl (10.8 MB view details)

Uploaded CPython 3.7m Windows x86

numpy-1.17.2-cp37-cp37m-manylinux1_x86_64.whl (20.3 MB view details)

Uploaded CPython 3.7m

numpy-1.17.2-cp37-cp37m-manylinux1_i686.whl (17.6 MB view details)

Uploaded CPython 3.7m

numpy-1.17.2-cp37-cp37m-macosx_10_6_intel.whl (15.0 MB view details)

Uploaded CPython 3.7m macOS 10.6+ intel

numpy-1.17.2-cp36-cp36m-win_amd64.whl (12.8 MB view details)

Uploaded CPython 3.6m Windows x86-64

numpy-1.17.2-cp36-cp36m-win32.whl (10.8 MB view details)

Uploaded CPython 3.6m Windows x86

numpy-1.17.2-cp36-cp36m-manylinux1_x86_64.whl (20.4 MB view details)

Uploaded CPython 3.6m

numpy-1.17.2-cp36-cp36m-manylinux1_i686.whl (17.6 MB view details)

Uploaded CPython 3.6m

numpy-1.17.2-cp36-cp36m-macosx_10_6_intel.whl (15.0 MB view details)

Uploaded CPython 3.6m macOS 10.6+ intel

numpy-1.17.2-cp35-cp35m-win_amd64.whl (12.7 MB view details)

Uploaded CPython 3.5m Windows x86-64

numpy-1.17.2-cp35-cp35m-win32.whl (10.7 MB view details)

Uploaded CPython 3.5m Windows x86

numpy-1.17.2-cp35-cp35m-manylinux1_x86_64.whl (20.1 MB view details)

Uploaded CPython 3.5m

numpy-1.17.2-cp35-cp35m-manylinux1_i686.whl (17.5 MB view details)

Uploaded CPython 3.5m

numpy-1.17.2-cp35-cp35m-macosx_10_6_intel.whl (14.9 MB view details)

Uploaded CPython 3.5m macOS 10.6+ intel

File details

Details for the file numpy-1.17.2.zip.

File metadata

  • Download URL: numpy-1.17.2.zip
  • Upload date:
  • Size: 6.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.2.zip
Algorithm Hash digest
SHA256 73615d3edc84dd7c4aeb212fa3748fb83217e00d201875a47327f55363cef2df
MD5 a0fffd7651e6ed4c60d94394ca6662cd
BLAKE2b-256 ac36325b27ef698684c38b1fe2e546e2e7ef9cecd7037bcdb35c87efec4356af

See more details on using hashes here.

File details

Details for the file numpy-1.17.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.17.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 12.8 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 5fd214f482ab53f2cea57414c5fb3e58895b17df6e6f5bca5be6a0bb6aea23bb
MD5 a7a026ef5c54dbc295e134d04367514e
BLAKE2b-256 bd517df1a3858ff0465f760b482514f1292836f8be08d84aba411b48dda72fa9

See more details on using hashes here.

File details

Details for the file numpy-1.17.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: numpy-1.17.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 10.8 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 16f19b3aa775dddc9814e02a46b8e6ae6a54ed8cf143962b4e53f0471dbd7b16
MD5 0ae4a060c7353723c340aaf0fc655220
BLAKE2b-256 a8ce36f9b4fbc7e675a7c8a3809dd5902e24cecfcdbc006e8a7b2417c2b830a2

See more details on using hashes here.

File details

Details for the file numpy-1.17.2-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.17.2-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 20.3 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.2-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 10132aa1fef99adc85a905d82e8497a580f83739837d7cbd234649f2e9b9dc58
MD5 1de9df1e07a1f2becc7925b0861d1b2d
BLAKE2b-256 bae046e2f0540370f2661b044647fa447fef2ecbcc8f7cdb4329ca2feb03fb23

See more details on using hashes here.

File details

Details for the file numpy-1.17.2-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.17.2-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 17.6 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.2-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 a4092682778dc48093e8bda8d26ee8360153e2047826f95a3f5eae09f0ae3abf
MD5 1f9b449eca275014f133872cdddf166d
BLAKE2b-256 4cf39188ea0aac4d0e8592fd5be82ec8e835c44e638240631f3865fb28a8fdac

See more details on using hashes here.

File details

Details for the file numpy-1.17.2-cp37-cp37m-macosx_10_6_intel.whl.

File metadata

  • Download URL: numpy-1.17.2-cp37-cp37m-macosx_10_6_intel.whl
  • Upload date:
  • Size: 15.0 MB
  • Tags: CPython 3.7m, macOS 10.6+ intel
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.2-cp37-cp37m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 e70fc8ff03a961f13363c2c95ef8285e0cf6a720f8271836f852cc0fa64e97c8
MD5 a82da3fd77787c73cae9057f63e3b666
BLAKE2b-256 b4e85ececadd9cc220bb783b4ce6ffaa9266925d37ed41237bc23bc530ab4f3d

See more details on using hashes here.

File details

Details for the file numpy-1.17.2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.17.2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 12.8 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 12322df2e21f033a60c80319c25011194cd2a21294cc66fee0908aeae2c27832
MD5 406fc90887f6af60f2edf229b2cfb2cf
BLAKE2b-256 2c3a2ffb91f7e310a0aa5cea890379291becfc65a915e32ed8d5088bf7544eda

See more details on using hashes here.

File details

Details for the file numpy-1.17.2-cp36-cp36m-win32.whl.

File metadata

  • Download URL: numpy-1.17.2-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 10.8 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.2-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 0d82cb7271a577529d07bbb05cb58675f2deb09772175fab96dc8de025d8ac05
MD5 8f166ccebf19a8c9c6ac00c8d93ba566
BLAKE2b-256 080d355749e480c6e91348dfffc4797e5f35446ffa370642b0f9d07b4fe144b3

See more details on using hashes here.

File details

Details for the file numpy-1.17.2-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.17.2-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 20.4 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.2-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b458de8624c9f6034af492372eb2fee41a8e605f03f4732f43fc099e227858b2
MD5 5b5a2f0bc6f01c1ae2c831fbfd8c8b06
BLAKE2b-256 e5e6c3fdc53aed9fa19d6ff3abf97dfad768ae3afce1b7431f7500000816bda5

See more details on using hashes here.

File details

Details for the file numpy-1.17.2-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.17.2-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 17.6 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.2-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 438a3f0e7b681642898fd7993d38e2bf140a2d1eafaf3e89bb626db7f50db355
MD5 0a6d7616b5ed35d65a58c6a61256afb0
BLAKE2b-256 4bed92fb11d03678033f257f0d46e9b96fafb81694eb0d249fb830c43ec47b58

See more details on using hashes here.

File details

Details for the file numpy-1.17.2-cp36-cp36m-macosx_10_6_intel.whl.

File metadata

  • Download URL: numpy-1.17.2-cp36-cp36m-macosx_10_6_intel.whl
  • Upload date:
  • Size: 15.0 MB
  • Tags: CPython 3.6m, macOS 10.6+ intel
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.2-cp36-cp36m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 ee8e9d7cad5fe6dde50ede0d2e978d81eafeaa6233fb0b8719f60214cf226578
MD5 3eed381285a43bd23d7c568c6c165ec9
BLAKE2b-256 05cb9ef2b8901e5969851b539c0f45ab8f2794bac34490e2d351d72b660d6e05

See more details on using hashes here.

File details

Details for the file numpy-1.17.2-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.17.2-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 12.7 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.2-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 f4a4f6aba148858a5a5d546a99280f71f5ee6ec8182a7d195af1a914195b21a2
MD5 b963be3cae47b66b2c8b433d34cb93d1
BLAKE2b-256 78d4477f93a5325a9664086e158cd6292f88f4a3a2d9141814237dc04b378903

See more details on using hashes here.

File details

Details for the file numpy-1.17.2-cp35-cp35m-win32.whl.

File metadata

  • Download URL: numpy-1.17.2-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 10.7 MB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.2-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 05dbfe72684cc14b92568de1bc1f41e5f62b00f714afc9adee42f6311738091f
MD5 0bc93e932b32408cceb5579f074e30a9
BLAKE2b-256 a608205400f1e3a1a80f70bddf480ef9dde778bb1add29997d2a3496c5d2948f

See more details on using hashes here.

File details

Details for the file numpy-1.17.2-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.17.2-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 20.1 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.2-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7d077f2976b8f3de08a0dcf5d72083f4af5411e8fddacd662aae27baa2601196
MD5 279b286a569bacba85dfe44d86ed9767
BLAKE2b-256 9b212b18339d24a2f73dcefb2f10f48aff6182e16da83e3a612684443c6cfb29

See more details on using hashes here.

File details

Details for the file numpy-1.17.2-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.17.2-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 17.5 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.2-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 7bd355ad7496f4ce1d235e9814ec81ee3d28308d591c067ce92e49f745ba2c2f
MD5 307df8c629637865205276f0e48cbe53
BLAKE2b-256 d80f90a571f416ba2965b74ae11f94216786c03284adf0caf33ceaa2e9597498

See more details on using hashes here.

File details

Details for the file numpy-1.17.2-cp35-cp35m-macosx_10_6_intel.whl.

File metadata

  • Download URL: numpy-1.17.2-cp35-cp35m-macosx_10_6_intel.whl
  • Upload date:
  • Size: 14.9 MB
  • Tags: CPython 3.5m, macOS 10.6+ intel
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.16

File hashes

Hashes for numpy-1.17.2-cp35-cp35m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 3d0b0989dd2d066db006158de7220802899a1e5c8cf622abe2d0bd158fd01c2c
MD5 900786591ffe811ff9ff8b3fcf9e3ff9
BLAKE2b-256 e5acbab733d7adf9d86d32f364cad971e424ad3c2986165e9402d107de5fa04e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page