Skip to main content

NumPy is the fundamental package for array computing with Python.

Project description

It provides:

  • a powerful N-dimensional array object

  • sophisticated (broadcasting) functions

  • tools for integrating C/C++ and Fortran code

  • useful linear algebra, Fourier transform, and random number capabilities

  • and much more

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.

All NumPy wheels distributed on PyPI are BSD licensed.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.17.5.zip (6.4 MB view details)

Uploaded Source

Built Distributions

numpy-1.17.5-cp38-cp38-win_amd64.whl (12.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

numpy-1.17.5-cp38-cp38-win32.whl (10.7 MB view details)

Uploaded CPython 3.8 Windows x86

numpy-1.17.5-cp38-cp38-manylinux1_x86_64.whl (20.5 MB view details)

Uploaded CPython 3.8

numpy-1.17.5-cp38-cp38-manylinux1_i686.whl (17.7 MB view details)

Uploaded CPython 3.8

numpy-1.17.5-cp38-cp38-macosx_10_9_x86_64.whl (15.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

numpy-1.17.5-cp37-cp37m-win_amd64.whl (12.7 MB view details)

Uploaded CPython 3.7m Windows x86-64

numpy-1.17.5-cp37-cp37m-win32.whl (10.7 MB view details)

Uploaded CPython 3.7m Windows x86

numpy-1.17.5-cp37-cp37m-manylinux1_x86_64.whl (20.0 MB view details)

Uploaded CPython 3.7m

numpy-1.17.5-cp37-cp37m-manylinux1_i686.whl (17.3 MB view details)

Uploaded CPython 3.7m

numpy-1.17.5-cp37-cp37m-macosx_10_9_x86_64.whl (15.1 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

numpy-1.17.5-cp36-cp36m-win_amd64.whl (12.7 MB view details)

Uploaded CPython 3.6m Windows x86-64

numpy-1.17.5-cp36-cp36m-win32.whl (10.7 MB view details)

Uploaded CPython 3.6m Windows x86

numpy-1.17.5-cp36-cp36m-manylinux1_x86_64.whl (20.0 MB view details)

Uploaded CPython 3.6m

numpy-1.17.5-cp36-cp36m-manylinux1_i686.whl (17.3 MB view details)

Uploaded CPython 3.6m

numpy-1.17.5-cp36-cp36m-macosx_10_9_x86_64.whl (15.1 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

numpy-1.17.5-cp35-cp35m-win_amd64.whl (12.7 MB view details)

Uploaded CPython 3.5m Windows x86-64

numpy-1.17.5-cp35-cp35m-win32.whl (10.7 MB view details)

Uploaded CPython 3.5m Windows x86

numpy-1.17.5-cp35-cp35m-manylinux1_x86_64.whl (19.8 MB view details)

Uploaded CPython 3.5m

numpy-1.17.5-cp35-cp35m-manylinux1_i686.whl (17.1 MB view details)

Uploaded CPython 3.5m

numpy-1.17.5-cp35-cp35m-macosx_10_9_intel.whl (14.8 MB view details)

Uploaded CPython 3.5m macOS 10.9+ intel

File details

Details for the file numpy-1.17.5.zip.

File metadata

  • Download URL: numpy-1.17.5.zip
  • Upload date:
  • Size: 6.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.5

File hashes

Hashes for numpy-1.17.5.zip
Algorithm Hash digest
SHA256 16507ba6617f62ae3c6ab1725ae6f550331025d4d9a369b83f6d5a470446c342
MD5 763a5646fa6eef7a22f4895bca0524f2
BLAKE2b-256 d9098e89c05abc450ea347f40b4fa917ec5c69b5228da344487f178586a3187c

See more details on using hashes here.

File details

Details for the file numpy-1.17.5-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: numpy-1.17.5-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 12.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.5

File hashes

Hashes for numpy-1.17.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 14804866e57322bf601c966e428c271b7e301b631bdfbe0522800483b802bc58
MD5 ba5eb1d2705e4a169df105ce7a95abc0
BLAKE2b-256 2a6322f47f8a8abed7511048326ed3e067d54591d62d9a2d2e9bb7fe4659817f

See more details on using hashes here.

File details

Details for the file numpy-1.17.5-cp38-cp38-win32.whl.

File metadata

  • Download URL: numpy-1.17.5-cp38-cp38-win32.whl
  • Upload date:
  • Size: 10.7 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.5

File hashes

Hashes for numpy-1.17.5-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 6338f8fa99ea0b00944a256941eea406089a9c0242f594b69289edd91e2d6192
MD5 91a89b84875f30f6b8166d4791212aa3
BLAKE2b-256 b0fb99b04f83b78eba06b3ded3cb47857f39fdcd25791fcfea179cef859523cc

See more details on using hashes here.

File details

Details for the file numpy-1.17.5-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.17.5-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 20.5 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.5

File hashes

Hashes for numpy-1.17.5-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 aa3dd92c1427e032fe345f054503f45c9fc7883aa7156a60900641259dd78a78
MD5 de8f5f3f602f889fb0ed42cfd5da40bc
BLAKE2b-256 1ff27117d1249f6afda8025607cbc05ac4108c461d96a65fa9b1a19889090f2e

See more details on using hashes here.

File details

Details for the file numpy-1.17.5-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.17.5-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 17.7 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.5

File hashes

Hashes for numpy-1.17.5-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 73d20aebe518997dce89da356d4b8e4cf60143151c22a0ec76cb00840bb09320
MD5 003e1514a5ed31cebb10a8055f7b63e6
BLAKE2b-256 cd4c860cfc39153b8dec80396da0b05c26edbab1c894cffa20861621025340c0

See more details on using hashes here.

File details

Details for the file numpy-1.17.5-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.17.5-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 15.1 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.5

File hashes

Hashes for numpy-1.17.5-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fc56ec046a2cc3aba91fe29e482c145c17925db1b00eafa924d9e16020a3eb88
MD5 1fddb7a3de3aba553614919411e70698
BLAKE2b-256 3206eb7e264113f2675dc620713b2b4a1eff7e7f1b8e3101fce2f50cfb10f462

See more details on using hashes here.

File details

Details for the file numpy-1.17.5-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.17.5-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 12.7 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.5

File hashes

Hashes for numpy-1.17.5-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 15db548aade41e32bfb6f6d3d9e91797261197622afe4102f79220d17da2a29f
MD5 930a172f90ea6658adf2d25700a98757
BLAKE2b-256 34ac2a68db01eee12bc66b86456d46ce1658e0acad24570d90fc1c48afd84c9b

See more details on using hashes here.

File details

Details for the file numpy-1.17.5-cp37-cp37m-win32.whl.

File metadata

  • Download URL: numpy-1.17.5-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 10.7 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.5

File hashes

Hashes for numpy-1.17.5-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 68bdc37f3ccdc3e945914b3201acd8823ac9dec870ede5371cd5cfedcf5a901a
MD5 f9497454c4d3a8fdcc62788420f365c7
BLAKE2b-256 c2f98396f363110282b95b2c4a55a04ad50bdd6e3d14b1cfe340931238e3c491

See more details on using hashes here.

File details

Details for the file numpy-1.17.5-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.17.5-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 20.0 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.5

File hashes

Hashes for numpy-1.17.5-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 31db2f9604afbf897b23478942074bbbb2513467d2b4b4ac573a7b65c63c073c
MD5 a399036176dd2e23e07b866b460b6f20
BLAKE2b-256 b15120098150b6108061cb7542af3de7bfcfe0182bca21613697153e49dc4adc

See more details on using hashes here.

File details

Details for the file numpy-1.17.5-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.17.5-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 17.3 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.5

File hashes

Hashes for numpy-1.17.5-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 348efb76a26f9f3235e492813503639731a885aa5780579ee28d688607d188b2
MD5 8400685497628c48b292ff8bb8b7286e
BLAKE2b-256 4848786a91a51e0b123485f575ee9a775b5519afe06c759f4e99faeb65f22a0c

See more details on using hashes here.

File details

Details for the file numpy-1.17.5-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.17.5-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 15.1 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.5

File hashes

Hashes for numpy-1.17.5-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8ba8ef37b16288dd2390cd9dea3c8470436f6cfe4c665f4640c349e98bae2908
MD5 8be28f068e0b2e9c5202debd6e2bcf6c
BLAKE2b-256 e3531f9cf626f83a4bf1f0960c385c6325e4dee72b13f6ca45f2a7b64ab724a9

See more details on using hashes here.

File details

Details for the file numpy-1.17.5-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.17.5-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 12.7 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.5

File hashes

Hashes for numpy-1.17.5-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 259b5aa0a1d2e63bbe9d985bc8249b515541b9993e1b1540563428f5db7bc389
MD5 ee5c057451e77ad2aeb1a7ed2df3754d
BLAKE2b-256 9950acb9ec802f3eb149ee5f7a9d5a6ca0d741193ac55ef5ff09cfe267865575

See more details on using hashes here.

File details

Details for the file numpy-1.17.5-cp36-cp36m-win32.whl.

File metadata

  • Download URL: numpy-1.17.5-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 10.7 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.5

File hashes

Hashes for numpy-1.17.5-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 af51bc1d78ddc1588115b73a1d3824440f5cf55c498681e8ac4ab2f28f0efa99
MD5 addda5c691eaca7b8aa2f8413c936f54
BLAKE2b-256 1755466ea819bed9bee9f352f3715d578aa2fdaf194ff4dc5b98322a48de045e

See more details on using hashes here.

File details

Details for the file numpy-1.17.5-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.17.5-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 20.0 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.5

File hashes

Hashes for numpy-1.17.5-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1739f079e2fcc985cc187aa3ce489d127a02ff12bcc5178269bb7ce5dc860e8f
MD5 e0f2d037ecd1ecbfa5f3d282bf69fad2
BLAKE2b-256 aec969096779fd29bf3066e24124e1c88213e40bf9d2eab4786d21948a37c40b

See more details on using hashes here.

File details

Details for the file numpy-1.17.5-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.17.5-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 17.3 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.5

File hashes

Hashes for numpy-1.17.5-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 5347fc1258ebe501d352363da06229fc97785d67423b56a9fd032a8389355781
MD5 47810aa1c34d9d46581f0b8dee0d1acc
BLAKE2b-256 b9ff14348e487f593f7aa9e17117d89456f687d0bbac0cb36157e6be652cd4bc

See more details on using hashes here.

File details

Details for the file numpy-1.17.5-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.17.5-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 15.1 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.5

File hashes

Hashes for numpy-1.17.5-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ca43581440ce2585f83c8d524c3435569b212bf281b7c67395e78260fcffb341
MD5 3a14d2a58b72db3020b2d1760aefed5c
BLAKE2b-256 b14732b4e3c6698d75a59dd809c220e0dc090e8a14fd638cb5a0ce374bfe73dc

See more details on using hashes here.

File details

Details for the file numpy-1.17.5-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.17.5-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 12.7 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.5

File hashes

Hashes for numpy-1.17.5-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 6167d214a842610d4168311d803f2a6f2c1a9a866b6b370f7408ba508d265add
MD5 98dfbe821c010b34771f789dff36ca76
BLAKE2b-256 124ac36f153bde8f69c0cef539bbebe5fcbabfa1ab22c95e99b2b60c8757d84d

See more details on using hashes here.

File details

Details for the file numpy-1.17.5-cp35-cp35m-win32.whl.

File metadata

  • Download URL: numpy-1.17.5-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 10.7 MB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.5

File hashes

Hashes for numpy-1.17.5-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 c3fb7eb84cd455ea2294980e557cc40b0042f7fc7ebab28c74ccae85c8b0c2c4
MD5 7ac18d112a745aabf5059da85de91c57
BLAKE2b-256 a2e5d12346b5e9da23346287147a165755807cac6216711fd120c098b507938e

See more details on using hashes here.

File details

Details for the file numpy-1.17.5-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.17.5-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 19.8 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.5

File hashes

Hashes for numpy-1.17.5-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4760bcc6adaf0d853379d01ce60f320e5ab6d0d719662aef3c460dad3cf79989
MD5 41b4800ea0b8410919500e264994fb6f
BLAKE2b-256 7b5b69bbe767592b1137c5d4501b6d66ced8078ad29b02141529bbd9c315ef44

See more details on using hashes here.

File details

Details for the file numpy-1.17.5-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.17.5-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 17.1 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.5

File hashes

Hashes for numpy-1.17.5-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 6c6cab8089ad39554d7fed04d338e7bd7ea6ac48235a542ea0b37214c8d0a9bc
MD5 49b263605ab32a0880fa68b29c2586b0
BLAKE2b-256 a6afe4c94979bb6fd0990d14d563009964f7a82530733f796475492807d0cfda

See more details on using hashes here.

File details

Details for the file numpy-1.17.5-cp35-cp35m-macosx_10_9_intel.whl.

File metadata

  • Download URL: numpy-1.17.5-cp35-cp35m-macosx_10_9_intel.whl
  • Upload date:
  • Size: 14.8 MB
  • Tags: CPython 3.5m, macOS 10.9+ intel
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.5

File hashes

Hashes for numpy-1.17.5-cp35-cp35m-macosx_10_9_intel.whl
Algorithm Hash digest
SHA256 d977a91f7b02b14843562d2e8740acfdfb46996e64985b69b2d404bfa43bc07d
MD5 e1d378317e20e340ea46937cbaf45094
BLAKE2b-256 5a5e659f6b5bf4056a596ba0a3ea97d1a45e6c5fcb6cb9c9a902f3662faa0f45

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page