Skip to main content

NumPy is the fundamental package for array computing with Python.

Project description

It provides:

  • a powerful N-dimensional array object

  • sophisticated (broadcasting) functions

  • tools for integrating C/C++ and Fortran code

  • useful linear algebra, Fourier transform, and random number capabilities

  • and much more

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.

All NumPy wheels distributed on PyPI are BSD licensed.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.18.0.zip (5.4 MB view details)

Uploaded Source

Built Distributions

numpy-1.18.0-cp38-cp38-win_amd64.whl (12.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

numpy-1.18.0-cp38-cp38-win32.whl (10.8 MB view details)

Uploaded CPython 3.8 Windows x86

numpy-1.18.0-cp38-cp38-manylinux1_x86_64.whl (20.6 MB view details)

Uploaded CPython 3.8

numpy-1.18.0-cp38-cp38-manylinux1_i686.whl (17.8 MB view details)

Uploaded CPython 3.8

numpy-1.18.0-cp38-cp38-macosx_10_9_x86_64.whl (15.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

numpy-1.18.0-cp37-cp37m-win_amd64.whl (12.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

numpy-1.18.0-cp37-cp37m-win32.whl (10.8 MB view details)

Uploaded CPython 3.7m Windows x86

numpy-1.18.0-cp37-cp37m-manylinux1_x86_64.whl (20.1 MB view details)

Uploaded CPython 3.7m

numpy-1.18.0-cp37-cp37m-manylinux1_i686.whl (17.4 MB view details)

Uploaded CPython 3.7m

numpy-1.18.0-cp37-cp37m-macosx_10_9_x86_64.whl (15.1 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

numpy-1.18.0-cp36-cp36m-win_amd64.whl (12.8 MB view details)

Uploaded CPython 3.6m Windows x86-64

numpy-1.18.0-cp36-cp36m-win32.whl (10.8 MB view details)

Uploaded CPython 3.6m Windows x86

numpy-1.18.0-cp36-cp36m-manylinux1_x86_64.whl (20.1 MB view details)

Uploaded CPython 3.6m

numpy-1.18.0-cp36-cp36m-manylinux1_i686.whl (17.4 MB view details)

Uploaded CPython 3.6m

numpy-1.18.0-cp36-cp36m-macosx_10_9_x86_64.whl (15.2 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

numpy-1.18.0-cp35-cp35m-win_amd64.whl (12.7 MB view details)

Uploaded CPython 3.5m Windows x86-64

numpy-1.18.0-cp35-cp35m-win32.whl (10.7 MB view details)

Uploaded CPython 3.5m Windows x86

numpy-1.18.0-cp35-cp35m-manylinux1_x86_64.whl (19.9 MB view details)

Uploaded CPython 3.5m

numpy-1.18.0-cp35-cp35m-manylinux1_i686.whl (17.2 MB view details)

Uploaded CPython 3.5m

numpy-1.18.0-cp35-cp35m-macosx_10_6_intel.whl (14.8 MB view details)

Uploaded CPython 3.5m macOS 10.6+ intel

File details

Details for the file numpy-1.18.0.zip.

File metadata

  • Download URL: numpy-1.18.0.zip
  • Upload date:
  • Size: 5.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.5

File hashes

Hashes for numpy-1.18.0.zip
Algorithm Hash digest
SHA256 a9d72d9abaf65628f0f31bbb573b7d9304e43b1e6bbae43149c17737a42764c4
MD5 3545a7dc22e704461f6ccb604b8da952
BLAKE2b-256 310a5df350c29a06835d534a6c4f5681075304da38d85f1c69e5226a635a67ce

See more details on using hashes here.

File details

Details for the file numpy-1.18.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: numpy-1.18.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 12.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.5

File hashes

Hashes for numpy-1.18.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 712f0c32555132f4b641b918bdb1fd3c692909ae916a233ce7f50eac2de87e37
MD5 c86dc59260f42e9cce05a396cbb33f4e
BLAKE2b-256 bc8d2b9e00c884bba5aa7a400941f356763cf60c578cc31400dd9bcd495084a2

See more details on using hashes here.

File details

Details for the file numpy-1.18.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: numpy-1.18.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 10.8 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.5

File hashes

Hashes for numpy-1.18.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 03bbde29ac8fba860bb2c53a1525b3604a9b60417855ac3119d89868ec6041c3
MD5 45a9355fb360d321d90ae55aefb1d206
BLAKE2b-256 0fc74b7ecbf676443c70ac2fa2120a4cefe51917e284d7c926a187f3e3ec207d

See more details on using hashes here.

File details

Details for the file numpy-1.18.0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.18.0-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 20.6 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.5

File hashes

Hashes for numpy-1.18.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 56710a756c5009af9f35b91a22790701420406d9ac24cf6b652b0e22cfbbb7ff
MD5 4cac27e608e6d24a8b2b6b911bd23d6c
BLAKE2b-256 f54dcbea29c189e2a9c5d3e2d76307be15f7f864a073cdb6c1abbc8e4311afbc

See more details on using hashes here.

File details

Details for the file numpy-1.18.0-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.18.0-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 17.8 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.5

File hashes

Hashes for numpy-1.18.0-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 1c35fb1131362e6090d30286cfda52ddd42e69d3e2bf1fea190a0fad83ea3a18
MD5 dc6e094c4c7777ac4040e6f945788f60
BLAKE2b-256 6ee7eb05d02d81e5cdc9c2a3c4172ceb8dbab74f9f82ec85f4395aea5bb2a7a0

See more details on using hashes here.

File details

Details for the file numpy-1.18.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.18.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 15.2 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.5

File hashes

Hashes for numpy-1.18.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9d6de2ad782aae68f7ed0e0e616477fbf693d6d7cc5f0f1505833ff12f84a673
MD5 89bbc272a243cdf5c521fea5efe6b853
BLAKE2b-256 857ca870abc411a46b90b3c38b1e609e3bdae97fc87bc4c7e49dc3ac98df36d1

See more details on using hashes here.

File details

Details for the file numpy-1.18.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.18.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 12.8 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.5

File hashes

Hashes for numpy-1.18.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 62506e9e4d2a39c87984f081a2651d4282a1d706b1a82fe9d50a559bb58e705a
MD5 022dd577b0858b146e2d33ed7426cf07
BLAKE2b-256 e90fb1aaf961980d5ea94243f28f91d3f6fc6f3b7e5047a9b8dc037541c2cc11

See more details on using hashes here.

File details

Details for the file numpy-1.18.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: numpy-1.18.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 10.8 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.5

File hashes

Hashes for numpy-1.18.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 ac3cf835c334fcc6b74dc4e630f9b5ff7b4c43f7fb2a7813208d95d4e10b5623
MD5 df8e307782f55f508405b135211dbeb0
BLAKE2b-256 bbd97015a4771b793ac37a7be375cafbef09db874b4903c6e5ca5edaa8506f67

See more details on using hashes here.

File details

Details for the file numpy-1.18.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.18.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 20.1 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.5

File hashes

Hashes for numpy-1.18.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 854f6ed4fa91fa6da5d764558804ba5b0f43a51e5fe9fc4fdc93270b052f188a
MD5 f0f7b7e58635dea515f6aa5302bdd924
BLAKE2b-256 2053127cb49435bcf5d841baf8eafa030931c62a9eac577a641f8c2293d23371

See more details on using hashes here.

File details

Details for the file numpy-1.18.0-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.18.0-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 17.4 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.5

File hashes

Hashes for numpy-1.18.0-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 905cd6fa6ac14654a6a32b21fad34670e97881d832e24a3ca32e19b455edb4a8
MD5 3eff2e553b4826428790551834f862e9
BLAKE2b-256 e07a346fb0c3a7e3e39d593d43b3237b23ecbd2bc330ba419c3ededfb42a2378

See more details on using hashes here.

File details

Details for the file numpy-1.18.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.18.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 15.1 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.5

File hashes

Hashes for numpy-1.18.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f6a7421da632fc01e8a3ecd19c3f7350258d82501a646747664bae9c6a87c731
MD5 d3279da6815745d977f16383d9b8c0d7
BLAKE2b-256 f014f71a89e03578084111e352f464d9f3b7f701ebbecbd1a60e89c96983ef77

See more details on using hashes here.

File details

Details for the file numpy-1.18.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.18.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 12.8 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.5

File hashes

Hashes for numpy-1.18.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 3c68c827689ca0ca713dba598335073ce0966850ec0b30715527dce4ecd84055
MD5 28de3a14f6fcf1391929f1061590b49d
BLAKE2b-256 ec2375dfc62331c8c49f073051512718f3f36ee67cf3be290f58b4b03ec3cb51

See more details on using hashes here.

File details

Details for the file numpy-1.18.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: numpy-1.18.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 10.8 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.5

File hashes

Hashes for numpy-1.18.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 a30f5c3e1b1b5d16ec1f03f4df28e08b8a7529d8c920bbed657f4fde61f1fbcd
MD5 f6b497230df4d8b9a3e80e8e6b896caa
BLAKE2b-256 a7e889f536aaf124694da738cbbf082438c89bc8ddefa9e9a6f66671cb539170

See more details on using hashes here.

File details

Details for the file numpy-1.18.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.18.0-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 20.1 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.5

File hashes

Hashes for numpy-1.18.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6f8113c8dbfc192b58996ee77333696469ea121d1c44ea429d8fd266e4c6be51
MD5 7cdcb013123ae7b44100ca00a98f8ab3
BLAKE2b-256 92e645f71bd24f4e37629e9db5fb75caab919507deae6a5a257f9e4685a5f931

See more details on using hashes here.

File details

Details for the file numpy-1.18.0-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.18.0-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 17.4 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.5

File hashes

Hashes for numpy-1.18.0-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 cc070fc43a494e42732d6ae2f6621db040611c1dde64762a40c8418023af56d7
MD5 990b9567a5f5322ec0115552be9bd169
BLAKE2b-256 55b039a2928925a5c3c45a6387d649c7aa707ac59f397df203e69016b48da359

See more details on using hashes here.

File details

Details for the file numpy-1.18.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.18.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 15.2 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.5

File hashes

Hashes for numpy-1.18.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1baefd1fb4695e7f2e305467dbd876d765e6edd30c522894df76f8301efaee36
MD5 dc0f8c3b608f17fd1af2ac5dab012683
BLAKE2b-256 7ccd5243645399c09bb5081e8d2847583f7a6b7cca55eb096a880eda0b602d4d

See more details on using hashes here.

File details

Details for the file numpy-1.18.0-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.18.0-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 12.7 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.5

File hashes

Hashes for numpy-1.18.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 f084d513de729ff10cd72a1f80db468cff464fedb1ef2fea030221a0f62d7ff4
MD5 52ab10e952b72c69f492f30dcc03e561
BLAKE2b-256 a7d3b506e0b9384ec6467ba8dc77df9843105dea43f8a58e76cdde15b34a39a5

See more details on using hashes here.

File details

Details for the file numpy-1.18.0-cp35-cp35m-win32.whl.

File metadata

  • Download URL: numpy-1.18.0-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 10.7 MB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.5

File hashes

Hashes for numpy-1.18.0-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 e1080e37c090534adb2dd7ae1c59ee883e5d8c3e63d2a4d43c20ee348d0459c5
MD5 785d52acbbbcdd4967acd6f27e341dc6
BLAKE2b-256 cd7628776049aaaa92cfe9257ee1f1675ab45882ea1670548b7c8e5f0d139723

See more details on using hashes here.

File details

Details for the file numpy-1.18.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.18.0-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 19.9 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.5

File hashes

Hashes for numpy-1.18.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 88c5ccbc4cadf39f32193a5ef22e3f84674418a9fd877c63322917ae8f295a56
MD5 81e4e422392219e8bc809d9b17c0d0a6
BLAKE2b-256 ebecd4b7855249ce87ece79783562dd6101b1f0abf461c25101c2e959d691e68

See more details on using hashes here.

File details

Details for the file numpy-1.18.0-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.18.0-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 17.2 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.5

File hashes

Hashes for numpy-1.18.0-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 443ab93fc35b31f01db8704681eb2fd82f3a1b2fa08eed2dd0e71f1f57423d4a
MD5 99dce76e7845e10585001a6892bb5f63
BLAKE2b-256 c08f82b210ee491c05c0256d62891909debb4dd64244006fc96abe3beea59507

See more details on using hashes here.

File details

Details for the file numpy-1.18.0-cp35-cp35m-macosx_10_6_intel.whl.

File metadata

  • Download URL: numpy-1.18.0-cp35-cp35m-macosx_10_6_intel.whl
  • Upload date:
  • Size: 14.8 MB
  • Tags: CPython 3.5m, macOS 10.6+ intel
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.5

File hashes

Hashes for numpy-1.18.0-cp35-cp35m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 b091e5d4cbbe79f0e8b6b6b522346e54a282eadb06e3fd761e9b6fafc2ca91ad
MD5 40576031bfba1732ee850a1c576ba096
BLAKE2b-256 72a52391c6386e89d5173d05905e5f38b7d9769da64e1779fc1467de57c80263

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page