Skip to main content

NumPy is the fundamental package for array computing with Python.

Project description

It provides:

  • a powerful N-dimensional array object

  • sophisticated (broadcasting) functions

  • tools for integrating C/C++ and Fortran code

  • useful linear algebra, Fourier transform, and random number capabilities

  • and much more

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.

All NumPy wheels distributed on PyPI are BSD licensed.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.18.3.zip (5.4 MB view details)

Uploaded Source

Built Distributions

numpy-1.18.3-cp38-cp38-win_amd64.whl (12.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

numpy-1.18.3-cp38-cp38-win32.whl (10.8 MB view details)

Uploaded CPython 3.8 Windows x86

numpy-1.18.3-cp38-cp38-manylinux1_x86_64.whl (20.6 MB view details)

Uploaded CPython 3.8

numpy-1.18.3-cp38-cp38-manylinux1_i686.whl (17.8 MB view details)

Uploaded CPython 3.8

numpy-1.18.3-cp38-cp38-macosx_10_9_x86_64.whl (15.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

numpy-1.18.3-cp37-cp37m-win_amd64.whl (12.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

numpy-1.18.3-cp37-cp37m-win32.whl (10.8 MB view details)

Uploaded CPython 3.7m Windows x86

numpy-1.18.3-cp37-cp37m-manylinux1_x86_64.whl (20.2 MB view details)

Uploaded CPython 3.7m

numpy-1.18.3-cp37-cp37m-manylinux1_i686.whl (17.4 MB view details)

Uploaded CPython 3.7m

numpy-1.18.3-cp37-cp37m-macosx_10_9_x86_64.whl (15.1 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

numpy-1.18.3-cp36-cp36m-win_amd64.whl (12.8 MB view details)

Uploaded CPython 3.6m Windows x86-64

numpy-1.18.3-cp36-cp36m-win32.whl (10.8 MB view details)

Uploaded CPython 3.6m Windows x86

numpy-1.18.3-cp36-cp36m-manylinux1_x86_64.whl (20.2 MB view details)

Uploaded CPython 3.6m

numpy-1.18.3-cp36-cp36m-manylinux1_i686.whl (17.4 MB view details)

Uploaded CPython 3.6m

numpy-1.18.3-cp36-cp36m-macosx_10_9_x86_64.whl (15.2 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

numpy-1.18.3-cp35-cp35m-win_amd64.whl (12.7 MB view details)

Uploaded CPython 3.5m Windows x86-64

numpy-1.18.3-cp35-cp35m-win32.whl (10.7 MB view details)

Uploaded CPython 3.5m Windows x86

numpy-1.18.3-cp35-cp35m-manylinux1_x86_64.whl (20.0 MB view details)

Uploaded CPython 3.5m

numpy-1.18.3-cp35-cp35m-manylinux1_i686.whl (17.2 MB view details)

Uploaded CPython 3.5m

numpy-1.18.3-cp35-cp35m-macosx_10_9_intel.whl (14.8 MB view details)

Uploaded CPython 3.5m macOS 10.9+ intel

File details

Details for the file numpy-1.18.3.zip.

File metadata

  • Download URL: numpy-1.18.3.zip
  • Upload date:
  • Size: 5.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.6

File hashes

Hashes for numpy-1.18.3.zip
Algorithm Hash digest
SHA256 e46e2384209c91996d5ec16744234d1c906ab79a701ce1a26155c9ec890b8dc8
MD5 91314710fe9d29d80b6ccc9629e4532b
BLAKE2b-256 0ce8c49cb52ed2ad734efb49eb1f7766888b0e65df1848f71fa7f7fd52183392

See more details on using hashes here.

File details

Details for the file numpy-1.18.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: numpy-1.18.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 12.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.6

File hashes

Hashes for numpy-1.18.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c60175d011a2e551a2f74c84e21e7c982489b96b6a5e4b030ecdeacf2914da68
MD5 205364093300906654debbe3beb13359
BLAKE2b-256 280a78fe9279e8c8b84e368e857a44eaf067e5c408b56655dfcc6e43068404d9

See more details on using hashes here.

File details

Details for the file numpy-1.18.3-cp38-cp38-win32.whl.

File metadata

  • Download URL: numpy-1.18.3-cp38-cp38-win32.whl
  • Upload date:
  • Size: 10.8 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.6

File hashes

Hashes for numpy-1.18.3-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 99f0ba97e369f02a21bb95faa3a0de55991fd5f0ece2e30a9e2eaebeac238921
MD5 5afe9a5f3c21299da599210ff5b76834
BLAKE2b-256 951b48ba889a3b734f8bdb851dbeab8a6cbc676f1fb0db0ab762b911f9fec7da

See more details on using hashes here.

File details

Details for the file numpy-1.18.3-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.18.3-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 20.6 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.6

File hashes

Hashes for numpy-1.18.3-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a4305564e93f5c4584f6758149fd446df39fd1e0a8c89ca0deb3cce56106a027
MD5 88ce81bc31dec4c14bf835dc466308ed
BLAKE2b-256 cac6cca531518aab1c161233c61e090728024aa647f2ff9c3b91d3f4e68e7e0e

See more details on using hashes here.

File details

Details for the file numpy-1.18.3-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.18.3-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 17.8 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.6

File hashes

Hashes for numpy-1.18.3-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 e94a39d5c40fffe7696009dbd11bc14a349b377e03a384ed011e03d698787dd3
MD5 5ec887ba38cd99775666f3493d82ea7c
BLAKE2b-256 2f66c52b9918371f9a60f22fe3a067de242f86a35473dd2efd6433d068782f8e

See more details on using hashes here.

File details

Details for the file numpy-1.18.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.18.3-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 15.2 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.6

File hashes

Hashes for numpy-1.18.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 264fd15590b3f02a1fbc095e7e1f37cdac698ff3829e12ffdcffdce3772f9d44
MD5 8f16d580559468b7cf23a71dc9945f39
BLAKE2b-256 32c5310f73fb510a839f9bfb49138961a9aafeeb72b303b13aa77c5801bae71b

See more details on using hashes here.

File details

Details for the file numpy-1.18.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.18.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 12.8 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.6

File hashes

Hashes for numpy-1.18.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 46f404314dbec78cb342904f9596f25f9b16e7cf304030f1339e553c8e77f51c
MD5 a78f661b1c7bd153c8399db90fba652c
BLAKE2b-256 9929080d63fb9579b426ea8081dc3f49f89e51912e0fb7d5be4a65cfa87e3898

See more details on using hashes here.

File details

Details for the file numpy-1.18.3-cp37-cp37m-win32.whl.

File metadata

  • Download URL: numpy-1.18.3-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 10.8 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.6

File hashes

Hashes for numpy-1.18.3-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 4847f0c993298b82fad809ea2916d857d0073dc17b0510fbbced663b3265929d
MD5 2ebc3ba9945d108df75319c359190516
BLAKE2b-256 1e73a0bc89e2b448459b09e7b393f724538015b4a678f4b1dfd13eefec38d52f

See more details on using hashes here.

File details

Details for the file numpy-1.18.3-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.18.3-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 20.2 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.6

File hashes

Hashes for numpy-1.18.3-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6725d2797c65598778409aba8cd67077bb089d5b7d3d87c2719b206dc84ec05e
MD5 afc4b2445d447f1a7c338026778bd34e
BLAKE2b-256 e738f14d6706ae4fa327bdb023ef40b4d902bccd314d886fac4031687a8acc74

See more details on using hashes here.

File details

Details for the file numpy-1.18.3-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.18.3-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 17.4 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.6

File hashes

Hashes for numpy-1.18.3-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 fdee7540d12519865b423af411bd60ddb513d2eb2cd921149b732854995bbf8b
MD5 5b36aaaeb4203b3d26c5dc801dbc66bd
BLAKE2b-256 623b6f65ff363de19141f38e32dd193894090b8544bc0f9ab56b65d24bcc2736

See more details on using hashes here.

File details

Details for the file numpy-1.18.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.18.3-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 15.1 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.6

File hashes

Hashes for numpy-1.18.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e607b8cdc2ae5d5a63cd1bec30a15b5ed583ac6a39f04b7ba0f03fcfbf29c05b
MD5 a5672f35136ea83dfa7960859a38d6e9
BLAKE2b-256 a03b9e23c7e8a313a7e03e960d9cd1542cadb7c8633a2eb42b48a8731e387a42

See more details on using hashes here.

File details

Details for the file numpy-1.18.3-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.18.3-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 12.8 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.6

File hashes

Hashes for numpy-1.18.3-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 a41f303b3f9157a31ce7203e3ca757a0c40c96669e72d9b6ee1bce8507638970
MD5 7d99a2a4ba819b75347468c8ed5e5a9e
BLAKE2b-256 19bbc09c702f1207484bd60527a25f658e85f19226a51fafc9af54c3c9d8a88d

See more details on using hashes here.

File details

Details for the file numpy-1.18.3-cp36-cp36m-win32.whl.

File metadata

  • Download URL: numpy-1.18.3-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 10.8 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.6

File hashes

Hashes for numpy-1.18.3-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 0aa2b318cf81eb1693fcfcbb8007e95e231d7e1aa24288137f3b19905736c3ee
MD5 6484099fdb78f732a758286d2eb87632
BLAKE2b-256 858c5dc2824e8fadd2eed84f4f5b2e3e9121bb7a370830f05f0117ed0e57e47a

See more details on using hashes here.

File details

Details for the file numpy-1.18.3-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.18.3-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 20.2 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.6

File hashes

Hashes for numpy-1.18.3-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a551d8cc267c634774830086da42e4ba157fa41dd3b93982bc9501b284b0c689
MD5 676c3dd16e9d80271c31ee5f9c3b8f20
BLAKE2b-256 3dfc4763e5f17ac6e7e7d55f377cde859ca1c5d5ac624441ab45315bc578aa9e

See more details on using hashes here.

File details

Details for the file numpy-1.18.3-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.18.3-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 17.4 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.6

File hashes

Hashes for numpy-1.18.3-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 40c24960cd5cec55222963f255858a1c47c6fa50a65a5b03fd7de75e3700eaaa
MD5 19892d1f036da55f8841ef121478d554
BLAKE2b-256 675b5c9f4e294bf3ea00934c15bac1743a29d4162bcf53174faf67a266daeafa

See more details on using hashes here.

File details

Details for the file numpy-1.18.3-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.18.3-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 15.2 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.6

File hashes

Hashes for numpy-1.18.3-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3d9e1554cd9b5999070c467b18e5ae3ebd7369f02706a8850816f576a954295f
MD5 2f1f330199d95bd8e709d0e4a0eec65e
BLAKE2b-256 35c8818bdb65dcd6a9d640ee006e5ed1a289511a4abc97000dcedcb66ae52059

See more details on using hashes here.

File details

Details for the file numpy-1.18.3-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.18.3-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 12.7 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.6

File hashes

Hashes for numpy-1.18.3-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 163c78c04f47f26ca1b21068cea25ed7c5ecafe5f5ab2ea4895656a750582b56
MD5 8769b5434fd08fe67d912077082b91d7
BLAKE2b-256 a2c30243b0b4ec343ae4c8b304a2bc0133052b3a3b65dfb42c6e03a4ef032ed8

See more details on using hashes here.

File details

Details for the file numpy-1.18.3-cp35-cp35m-win32.whl.

File metadata

  • Download URL: numpy-1.18.3-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 10.7 MB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.6

File hashes

Hashes for numpy-1.18.3-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 1e37626bcb8895c4b3873fcfd54e9bfc5ffec8d0f525651d6985fcc5c6b6003c
MD5 92cab35405fe3042e7aa8504d8669cd0
BLAKE2b-256 c37ac3699c15203bdf108ecbeaf85139fa019cbf4a12b3e8b4bff38bbf7710d6

See more details on using hashes here.

File details

Details for the file numpy-1.18.3-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.18.3-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 20.0 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.6

File hashes

Hashes for numpy-1.18.3-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 eb2286249ebfe8fcb5b425e5ec77e4736d53ee56d3ad296f8947f67150f495e3
MD5 5c0f1a8c94d095efd21ab4b8ffeed921
BLAKE2b-256 452548e4ea892e93348d48a3a0d23ad94b176d6ab66084efcd881c78771d4abf

See more details on using hashes here.

File details

Details for the file numpy-1.18.3-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.18.3-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 17.2 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.6

File hashes

Hashes for numpy-1.18.3-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 48e15612a8357393d176638c8f68a19273676877caea983f8baf188bad430379
MD5 f70d5c8d4f598653ff66f640487481ce
BLAKE2b-256 9dac2e6de9e2f22bfa5093e59d7d3f9ec8bb706cbf91433a19a0ed04f1c878ab

See more details on using hashes here.

File details

Details for the file numpy-1.18.3-cp35-cp35m-macosx_10_9_intel.whl.

File metadata

  • Download URL: numpy-1.18.3-cp35-cp35m-macosx_10_9_intel.whl
  • Upload date:
  • Size: 14.8 MB
  • Tags: CPython 3.5m, macOS 10.9+ intel
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.6

File hashes

Hashes for numpy-1.18.3-cp35-cp35m-macosx_10_9_intel.whl
Algorithm Hash digest
SHA256 a6bc9432c2640b008d5f29bad737714eb3e14bb8854878eacf3d7955c4e91c36
MD5 6582c9a045ba92cb11a7062cfabba898
BLAKE2b-256 430a8df2190a5d99bafd7c733bd2e52a5de8c22b62791cc21034f2950eaf95f1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page