Skip to main content

NumPy is the fundamental package for array computing with Python.

Project description

It provides:

  • a powerful N-dimensional array object

  • sophisticated (broadcasting) functions

  • tools for integrating C/C++ and Fortran code

  • useful linear algebra, Fourier transform, and random number capabilities

  • and much more

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.

All NumPy wheels distributed on PyPI are BSD licensed.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.18.5.zip (5.4 MB view details)

Uploaded Source

Built Distributions

numpy-1.18.5-cp38-cp38-win_amd64.whl (12.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

numpy-1.18.5-cp38-cp38-win32.whl (10.8 MB view details)

Uploaded CPython 3.8 Windows x86

numpy-1.18.5-cp38-cp38-manylinux1_x86_64.whl (20.6 MB view details)

Uploaded CPython 3.8

numpy-1.18.5-cp38-cp38-manylinux1_i686.whl (17.8 MB view details)

Uploaded CPython 3.8

numpy-1.18.5-cp38-cp38-macosx_10_9_x86_64.whl (15.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

numpy-1.18.5-cp37-cp37m-win_amd64.whl (12.7 MB view details)

Uploaded CPython 3.7m Windows x86-64

numpy-1.18.5-cp37-cp37m-win32.whl (10.8 MB view details)

Uploaded CPython 3.7m Windows x86

numpy-1.18.5-cp37-cp37m-manylinux1_x86_64.whl (20.1 MB view details)

Uploaded CPython 3.7m

numpy-1.18.5-cp37-cp37m-manylinux1_i686.whl (17.4 MB view details)

Uploaded CPython 3.7m

numpy-1.18.5-cp37-cp37m-macosx_10_9_x86_64.whl (15.1 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

numpy-1.18.5-cp36-cp36m-win_amd64.whl (12.7 MB view details)

Uploaded CPython 3.6m Windows x86-64

numpy-1.18.5-cp36-cp36m-win32.whl (10.8 MB view details)

Uploaded CPython 3.6m Windows x86

numpy-1.18.5-cp36-cp36m-manylinux1_x86_64.whl (20.1 MB view details)

Uploaded CPython 3.6m

numpy-1.18.5-cp36-cp36m-manylinux1_i686.whl (17.4 MB view details)

Uploaded CPython 3.6m

numpy-1.18.5-cp36-cp36m-macosx_10_9_x86_64.whl (15.1 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

numpy-1.18.5-cp35-cp35m-win_amd64.whl (12.7 MB view details)

Uploaded CPython 3.5m Windows x86-64

numpy-1.18.5-cp35-cp35m-win32.whl (10.7 MB view details)

Uploaded CPython 3.5m Windows x86

numpy-1.18.5-cp35-cp35m-manylinux1_x86_64.whl (19.9 MB view details)

Uploaded CPython 3.5m

numpy-1.18.5-cp35-cp35m-manylinux1_i686.whl (17.3 MB view details)

Uploaded CPython 3.5m

numpy-1.18.5-cp35-cp35m-macosx_10_9_intel.whl (14.8 MB view details)

Uploaded CPython 3.5m macOS 10.9+ intel

File details

Details for the file numpy-1.18.5.zip.

File metadata

  • Download URL: numpy-1.18.5.zip
  • Upload date:
  • Size: 5.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3

File hashes

Hashes for numpy-1.18.5.zip
Algorithm Hash digest
SHA256 34e96e9dae65c4839bd80012023aadd6ee2ccb73ce7fdf3074c62f301e63120b
MD5 0d426af04e17cd480ecf3cd70743eaf4
BLAKE2b-256 011bd3ddcabd5817be02df0e6ee20d64f77ff6d0d97f83b77f65e98c8a651981

See more details on using hashes here.

File details

Details for the file numpy-1.18.5-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: numpy-1.18.5-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 12.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3

File hashes

Hashes for numpy-1.18.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3dd6823d3e04b5f223e3e265b4a1eae15f104f4366edd409e5a5e413a98f911f
MD5 81c9e86442602529b3c52d4af7a515b7
BLAKE2b-256 22cb21a148329591931d8764e7ef49cb19586dd5b5e002a184988cb5ec1ccba9

See more details on using hashes here.

File details

Details for the file numpy-1.18.5-cp38-cp38-win32.whl.

File metadata

  • Download URL: numpy-1.18.5-cp38-cp38-win32.whl
  • Upload date:
  • Size: 10.8 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3

File hashes

Hashes for numpy-1.18.5-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 9c9d6531bc1886454f44aa8f809268bc481295cf9740827254f53c30104f074a
MD5 b66c03695208dd843b78acb32557a765
BLAKE2b-256 8a52daf6f4b7fd1499c153cb25ff84f87421598d95e5bb5b760585d2c0263773

See more details on using hashes here.

File details

Details for the file numpy-1.18.5-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.18.5-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 20.6 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3

File hashes

Hashes for numpy-1.18.5-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4674f7d27a6c1c52a4d1aa5f0881f1eff840d2206989bae6acb1c7668c02ebfb
MD5 2347f759a1b8bc27423bb5ece6ae1c79
BLAKE2b-256 01c687592f924246da1e58673cf708a2748754517c5cf050726238d6cfbd8df4

See more details on using hashes here.

File details

Details for the file numpy-1.18.5-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.18.5-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 17.8 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3

File hashes

Hashes for numpy-1.18.5-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 3676abe3d621fc467c4c1469ee11e395c82b2d6b5463a9454e37fe9da07cd0d7
MD5 1715c674b3070ccd90f56fa2cd48cce1
BLAKE2b-256 ae324382f0ed2723ee04a73e23d6ba9a03c4d09cc1189908756084ccef3305a4

See more details on using hashes here.

File details

Details for the file numpy-1.18.5-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.18.5-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 15.1 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3

File hashes

Hashes for numpy-1.18.5-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e15b382603c58f24265c9c931c9a45eebf44fe2e6b4eaedbb0d025ab3255228b
MD5 2b9153362bf0e53574abc2df048a1578
BLAKE2b-256 6d779492f79d58c9abb8a3a93a40ab661ca7f64169a6010ea1365a51294bd64a

See more details on using hashes here.

File details

Details for the file numpy-1.18.5-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.18.5-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 12.7 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3

File hashes

Hashes for numpy-1.18.5-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 0172304e7d8d40e9e49553901903dc5f5a49a703363ed756796f5808a06fc233
MD5 8b793d97dae258d06e63c452a2684b16
BLAKE2b-256 e4017a26148f7de9eb6c27f95b29eba16b7e820827cb9ebaae182d7483e44711

See more details on using hashes here.

File details

Details for the file numpy-1.18.5-cp37-cp37m-win32.whl.

File metadata

  • Download URL: numpy-1.18.5-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 10.8 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3

File hashes

Hashes for numpy-1.18.5-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 cae14a01a159b1ed91a324722d746523ec757357260c6804d11d6147a9e53e3f
MD5 08bdf2289600c5c728a2668b585fdd02
BLAKE2b-256 232e41a977865a8ad0ac98b3f9ae421415cd2cd3f195b179a6b5f3aafb7922d7

See more details on using hashes here.

File details

Details for the file numpy-1.18.5-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.18.5-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 20.1 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3

File hashes

Hashes for numpy-1.18.5-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b39321f1a74d1f9183bf1638a745b4fd6fe80efbb1f6b32b932a588b4bc7695f
MD5 f261237ab3d47b9b6e859bf240014a48
BLAKE2b-256 d6c658e517e8b1fb192725cfa23c01c2e60e4e6699314ee9684a1c5f5c9b27e1

See more details on using hashes here.

File details

Details for the file numpy-1.18.5-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.18.5-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 17.4 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3

File hashes

Hashes for numpy-1.18.5-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 cd49930af1d1e49a812d987c2620ee63965b619257bd76eaaa95870ca08837cf
MD5 97f27a6e2e6951cf8107132e7c628004
BLAKE2b-256 0ce10a99a7f1f7ade384ec1ac647534f2cccf480a863dafbc96097488fda004b

See more details on using hashes here.

File details

Details for the file numpy-1.18.5-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.18.5-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 15.1 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3

File hashes

Hashes for numpy-1.18.5-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a7acefddf994af1aeba05bbbafe4ba983a187079f125146dc5859e6d817df824
MD5 bc1ebaa1ecf20f22b72cbb824c9cbc21
BLAKE2b-256 3e000266fefaafb839760d5b25b884375b2ab0f842ebe138ee6c1ef807af44bb

See more details on using hashes here.

File details

Details for the file numpy-1.18.5-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.18.5-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 12.7 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3

File hashes

Hashes for numpy-1.18.5-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 b03b2c0badeb606d1232e5f78852c102c0a7989d3a534b3129e7856a52f3d161
MD5 acfa82d4e66601386dad19ad3a3983a5
BLAKE2b-256 dc18e69ef84530360c2d39db51acb4cc0012990f27fb1fa7542dac45ad30e7ab

See more details on using hashes here.

File details

Details for the file numpy-1.18.5-cp36-cp36m-win32.whl.

File metadata

  • Download URL: numpy-1.18.5-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 10.8 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3

File hashes

Hashes for numpy-1.18.5-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 4064f53d4cce69e9ac613256dc2162e56f20a4e2d2086b1956dd2fcf77b7fac5
MD5 9188a301a9640836322f2dc926640515
BLAKE2b-256 6ff26b9074c4e4d08196d8b373702c16f84978196dc627298e710af7b03c09e4

See more details on using hashes here.

File details

Details for the file numpy-1.18.5-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.18.5-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 20.1 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3

File hashes

Hashes for numpy-1.18.5-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f718a7949d1c4f622ff548c572e0c03440b49b9531ff00e4ed5738b459f011e8
MD5 259dbb8694209921d56ffb091ae42b5b
BLAKE2b-256 b3a9b1bc4c935ed063766bce7d3e8c7b20bd52e515ff1c732b02caacf7918e5a

See more details on using hashes here.

File details

Details for the file numpy-1.18.5-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.18.5-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 17.4 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3

File hashes

Hashes for numpy-1.18.5-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 ef627986941b5edd1ed74ba89ca43196ed197f1a206a3f18cc9faf2fb84fd675
MD5 402be8c771c2541c7ee936ef63c9ebc0
BLAKE2b-256 50f45db156e455543c184115e13b28c8c080e4bbc8af9e7f4dfeaae3ebbf74c1

See more details on using hashes here.

File details

Details for the file numpy-1.18.5-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.18.5-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 15.1 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3

File hashes

Hashes for numpy-1.18.5-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ac792b385d81151bae2a5a8adb2b88261ceb4976dbfaaad9ce3a200e036753dc
MD5 caef5b4785e5deb6891f118a49d48ccc
BLAKE2b-256 ae47fc66812fec2cdbdac2cdbc7788ce55fb2072bae5326279079fb00b765b50

See more details on using hashes here.

File details

Details for the file numpy-1.18.5-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.18.5-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 12.7 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3

File hashes

Hashes for numpy-1.18.5-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 965df25449305092b23d5145b9bdaeb0149b6e41a77a7d728b1644b3c99277c1
MD5 5a93e72e30c56462492a29315e19c0cc
BLAKE2b-256 ed09ff8f529a5548ff788765f66a81ef751130f26f8c7d517e94d3dbf3ba1ed5

See more details on using hashes here.

File details

Details for the file numpy-1.18.5-cp35-cp35m-win32.whl.

File metadata

  • Download URL: numpy-1.18.5-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 10.7 MB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3

File hashes

Hashes for numpy-1.18.5-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 a87f59508c2b7ceb8631c20630118cc546f1f815e034193dc72390db038a5cb3
MD5 2cc7cc1b1640d6b50c50d96a35624698
BLAKE2b-256 46044ceccf9b04f89f32bfc2976ebf6c35488c1d6a4b5d375dc4d3137c967386

See more details on using hashes here.

File details

Details for the file numpy-1.18.5-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.18.5-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 19.9 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3

File hashes

Hashes for numpy-1.18.5-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a78e438db8ec26d5d9d0e584b27ef25c7afa5a182d1bf4d05e313d2d6d515271
MD5 d5bf77d6caf4f83ed871ab9e4f9d1f72
BLAKE2b-256 b53688723426b4ff576809fec7d73594fe17a35c27f8d01f93637637a29ae25b

See more details on using hashes here.

File details

Details for the file numpy-1.18.5-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.18.5-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 17.3 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3

File hashes

Hashes for numpy-1.18.5-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 7d42ab8cedd175b5ebcb39b5208b25ba104842489ed59fbb29356f671ac93583
MD5 79990253bda9ffa2db75152e77c318e9
BLAKE2b-256 e70d2f062df1cf227372d0bfc22edfe2451cda972a38185a5748028326c517c3

See more details on using hashes here.

File details

Details for the file numpy-1.18.5-cp35-cp35m-macosx_10_9_intel.whl.

File metadata

  • Download URL: numpy-1.18.5-cp35-cp35m-macosx_10_9_intel.whl
  • Upload date:
  • Size: 14.8 MB
  • Tags: CPython 3.5m, macOS 10.9+ intel
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3

File hashes

Hashes for numpy-1.18.5-cp35-cp35m-macosx_10_9_intel.whl
Algorithm Hash digest
SHA256 e91d31b34fc7c2c8f756b4e902f901f856ae53a93399368d9a0dc7be17ed2ca0
MD5 f923519347ba9f6bca59dce0583bdbd5
BLAKE2b-256 85932d19421e0f70b2fd4a1b6f86ff739dd2ce3cea6cab50b2b5f792045388b4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page