Skip to main content

NumPy is the fundamental package for array computing with Python.

Project description

It provides:

  • a powerful N-dimensional array object

  • sophisticated (broadcasting) functions

  • tools for integrating C/C++ and Fortran code

  • useful linear algebra, Fourier transform, and random number capabilities

  • and much more

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.

All NumPy wheels distributed on PyPI are BSD licensed.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.19.2.zip (7.3 MB view details)

Uploaded Source

Built Distributions

numpy-1.19.2-pp36-pypy36_pp73-manylinux2010_x86_64.whl (13.9 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

numpy-1.19.2-cp38-cp38-win_amd64.whl (13.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

numpy-1.19.2-cp38-cp38-win32.whl (10.9 MB view details)

Uploaded CPython 3.8 Windows x86

numpy-1.19.2-cp38-cp38-manylinux2014_aarch64.whl (12.2 MB view details)

Uploaded CPython 3.8

numpy-1.19.2-cp38-cp38-manylinux2010_x86_64.whl (14.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

numpy-1.19.2-cp38-cp38-manylinux2010_i686.whl (12.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

numpy-1.19.2-cp38-cp38-manylinux1_x86_64.whl (13.3 MB view details)

Uploaded CPython 3.8

numpy-1.19.2-cp38-cp38-manylinux1_i686.whl (11.5 MB view details)

Uploaded CPython 3.8

numpy-1.19.2-cp38-cp38-macosx_10_9_x86_64.whl (15.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

numpy-1.19.2-cp37-cp37m-win_amd64.whl (12.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

numpy-1.19.2-cp37-cp37m-win32.whl (10.9 MB view details)

Uploaded CPython 3.7m Windows x86

numpy-1.19.2-cp37-cp37m-manylinux2014_aarch64.whl (12.2 MB view details)

Uploaded CPython 3.7m

numpy-1.19.2-cp37-cp37m-manylinux2010_x86_64.whl (14.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

numpy-1.19.2-cp37-cp37m-manylinux2010_i686.whl (12.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

numpy-1.19.2-cp37-cp37m-manylinux1_x86_64.whl (13.4 MB view details)

Uploaded CPython 3.7m

numpy-1.19.2-cp37-cp37m-manylinux1_i686.whl (11.5 MB view details)

Uploaded CPython 3.7m

numpy-1.19.2-cp37-cp37m-macosx_10_9_x86_64.whl (15.3 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

numpy-1.19.2-cp36-cp36m-win_amd64.whl (12.9 MB view details)

Uploaded CPython 3.6m Windows x86-64

numpy-1.19.2-cp36-cp36m-win32.whl (10.9 MB view details)

Uploaded CPython 3.6m Windows x86

numpy-1.19.2-cp36-cp36m-manylinux2014_aarch64.whl (12.2 MB view details)

Uploaded CPython 3.6m

numpy-1.19.2-cp36-cp36m-manylinux2010_x86_64.whl (14.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

numpy-1.19.2-cp36-cp36m-manylinux2010_i686.whl (12.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

numpy-1.19.2-cp36-cp36m-manylinux1_x86_64.whl (13.4 MB view details)

Uploaded CPython 3.6m

numpy-1.19.2-cp36-cp36m-manylinux1_i686.whl (11.5 MB view details)

Uploaded CPython 3.6m

numpy-1.19.2-cp36-cp36m-macosx_10_9_x86_64.whl (15.3 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file numpy-1.19.2.zip.

File metadata

  • Download URL: numpy-1.19.2.zip
  • Upload date:
  • Size: 7.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.5

File hashes

Hashes for numpy-1.19.2.zip
Algorithm Hash digest
SHA256 0d310730e1e793527065ad7dde736197b705d0e4c9999775f212b03c44a8484c
MD5 2d011c5422596d742784ba5c2204bc5d
BLAKE2b-256 bfe815aea783ea72e2d4e51e3ec365e8dc4a1a32c9e5eb3a6d695b0d58e67cdd

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.19.2-pp36-pypy36_pp73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: numpy-1.19.2-pp36-pypy36_pp73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 13.9 MB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.5

File hashes

Hashes for numpy-1.19.2-pp36-pypy36_pp73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0bfd85053d1e9f60234f28f63d4a5147ada7f432943c113a11afcf3e65d9d4c8
MD5 ef4cf0675f801a4bf339348fc1843f50
BLAKE2b-256 09ae8d5ded8f9433d53ef75ed7b2a4606367051b6756cc2b748db3f92a30229b

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.19.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: numpy-1.19.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 13.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.5

File hashes

Hashes for numpy-1.19.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1669ec8e42f169ff715a904c9b2105b6640f3f2a4c4c2cb4920ae8b2785dac65
MD5 a3d85f244058882b90140468b86f2e2e
BLAKE2b-256 6989d8fc61a51ded540bd4b8859510b4ae44a0762c8b61dd81eb2c36f5e853ef

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.19.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: numpy-1.19.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 10.9 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.5

File hashes

Hashes for numpy-1.19.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 51ee93e1fac3fe08ef54ff1c7f329db64d8a9c5557e6c8e908be9497ac76374b
MD5 13ccd230fefdd56a1679fd72fd0d8a55
BLAKE2b-256 e19d836a92dc2b1cfbeeed869aa80501e03b423461d043366becb576e20ea6da

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.19.2-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

  • Download URL: numpy-1.19.2-cp38-cp38-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.5

File hashes

Hashes for numpy-1.19.2-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 04c7d4ebc5ff93d9822075ddb1751ff392a4375e5885299445fcebf877f179d5
MD5 39e363f10f0a9af0a8506699118d3aaf
BLAKE2b-256 9c16c092faaaf8ce348243ad9e60345799945d83b62c8dd20f26ab0ad9ee4a09

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.19.2-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: numpy-1.19.2-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 14.5 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.5

File hashes

Hashes for numpy-1.19.2-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d7ac33585e1f09e7345aa902c281bd777fdb792432d27fca857f39b70e5dd31c
MD5 4cffe85a99bfe08d47d7f1f655142be4
BLAKE2b-256 b6e12a184131468baa3894629785ff2f9edc6a1dd3b87d3b8b343d4e68e4d542

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.19.2-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: numpy-1.19.2-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 12.3 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.5

File hashes

Hashes for numpy-1.19.2-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 c35a01777f81e7333bcf276b605f39c872e28295441c265cd0c860f4b40148c1
MD5 e89e05d24b6f898005e03ba3f01c0641
BLAKE2b-256 80f9283e40b38a6491e4b8629a35181b03340109e8b8e81944c7e21a407e76d9

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.19.2-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.19.2-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 13.3 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.5

File hashes

Hashes for numpy-1.19.2-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 cebd4f4e64cfe87f2039e4725781f6326a61f095bc77b3716502bed812b385a9
MD5 e7b8242ee7a79778c6df64772fde5885
BLAKE2b-256 416e919522a6e1d067ddb5959c5716a659a05719e2f27487695d2a539b51d66e

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.19.2-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.19.2-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 11.5 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.5

File hashes

Hashes for numpy-1.19.2-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 59f3d687faea7a4f7f93bd9665e5b102f32f3fa28514f15b126f099b7997203d
MD5 7b003b2fd18125f3956eb3a182ab0d7f
BLAKE2b-256 73b2c5dab0a0bcb192d41811564b0417476f203265d9e73822ff4c44673d0753

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.19.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.19.2-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 15.3 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.5

File hashes

Hashes for numpy-1.19.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 58d66a6b3b55178a1f8a5fe98df26ace76260a70de694d99577ddeab7eaa9a9d
MD5 8f4d5df29d4fbf21bf8c4c976595214f
BLAKE2b-256 331ad10d1c23d21c289a3e87e751a9daf0907e91665cab08d0c35033fd4f5b55

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.19.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.19.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 12.9 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.5

File hashes

Hashes for numpy-1.19.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 addaa551b298052c16885fc70408d3848d4e2e7352de4e7a1e13e691abc734c1
MD5 a243b3e844507e424e828430010612c1
BLAKE2b-256 824e61764556b7ec13f5bd441b04530e2f9f11bb164308ef0e6951919bb846cb

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.19.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: numpy-1.19.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 10.9 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.5

File hashes

Hashes for numpy-1.19.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 aba1d5daf1144b956bc87ffb87966791f5e9f3e1f6fab3d7f581db1f5b598f7a
MD5 ad32d083e641f2cf1a50fe821f3673a7
BLAKE2b-256 755de8bb3a952f72176912b2d05f7da9775b1c9a7e78eae2f6dc8e9d84b031ef

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.19.2-cp37-cp37m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: numpy-1.19.2-cp37-cp37m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.5

File hashes

Hashes for numpy-1.19.2-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 54045b198aebf41bf6bf4088012777c1d11703bf74461d70cd350c0af2182e45
MD5 c7e9905e721dc31a666f59e30e37aa0d
BLAKE2b-256 ee0ceb599e1178b7db322f29218b31fb43ec00899c8ebe605e978ddb7719a6b3

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.19.2-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: numpy-1.19.2-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 14.5 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.5

File hashes

Hashes for numpy-1.19.2-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2117536e968abb7357d34d754e3733b0d7113d4c9f1d921f21a3d96dec5ff716
MD5 0d5cae15043a8172a1b8a478b7c98119
BLAKE2b-256 9b04c3846024ddc7514cde17087f62f0502abf85c53e8f69f6312c70db6d144e

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.19.2-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: numpy-1.19.2-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 12.3 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.5

File hashes

Hashes for numpy-1.19.2-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 0c66da1d202c52051625e55a249da35b31f65a81cb56e4c69af0dfb8fb0125bf
MD5 ec32c124ace9c08399e88b8eca6d7475
BLAKE2b-256 bf12ebfe2f88619cc5def0d3744b6cc95d599aaef0b7d86256084cdf818fb10d

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.19.2-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.19.2-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 13.4 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.5

File hashes

Hashes for numpy-1.19.2-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 62139af94728d22350a571b7c82795b9d59be77fc162414ada6c8b6a10ef5d02
MD5 21bfe38bdb317ad4af4959279dd90fde
BLAKE2b-256 d62ea2dbcff6f46bb65645d18538d67183a1cf56b006ba96a12575c282a976bc

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.19.2-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.19.2-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 11.5 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.5

File hashes

Hashes for numpy-1.19.2-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 eb25c381d168daf351147713f49c626030dcff7a393d5caa62515d415a6071d8
MD5 a0901b44347ba39154058a26a9fc8e77
BLAKE2b-256 16777fb992c1c31303ef2013bb77e9b71fddaaaa84debde090fb52579ba0871e

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.19.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.19.2-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 15.3 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.5

File hashes

Hashes for numpy-1.19.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d526fa58ae4aead839161535d59ea9565863bb0b0bdb3cc63214613fb16aced4
MD5 285d0fc2986bf4a050523d98f47f2175
BLAKE2b-256 c1a9f04a5b7db30cc30b41fe516b8914c5049264490a34a49d977937606fbb23

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.19.2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.19.2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 12.9 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.5

File hashes

Hashes for numpy-1.19.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 967c92435f0b3ba37a4257c48b8715b76741410467e2bdb1097e8391fccfae15
MD5 cf54372ccde7de333d7b69cd16abfa70
BLAKE2b-256 dc8ea78d4e4a28adadbf693a9c056a0d5955a906889fa0dc3768b88deb236e22

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.19.2-cp36-cp36m-win32.whl.

File metadata

  • Download URL: numpy-1.19.2-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 10.9 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.5

File hashes

Hashes for numpy-1.19.2-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 9a3001248b9231ed73894c773142658bab914645261275f675d86c290c37f66d
MD5 30bbe0bcd774ab483c7494d1cf827199
BLAKE2b-256 0500d062cbb270ef6fba5f55f136ddea811a3b66cecb61c48fcbebe15735f813

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.19.2-cp36-cp36m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: numpy-1.19.2-cp36-cp36m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.5

File hashes

Hashes for numpy-1.19.2-cp36-cp36m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7118f0a9f2f617f921ec7d278d981244ba83c85eea197be7c5a4f84af80a9c3c
MD5 f6eaf46804f0d66c123fa7ff728b178e
BLAKE2b-256 8a7822ab67c0cf07301be5433903c3ca865dd2af16a73784a1028fcf3646d1ee

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.19.2-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: numpy-1.19.2-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 14.5 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.5

File hashes

Hashes for numpy-1.19.2-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7c6646314291d8f5ea900a7ea9c4261f834b5b62159ba2abe3836f4fa6705526
MD5 7c442b7c5af62bd5be669bf6c360e114
BLAKE2b-256 6397af8a92864a04bfa48f1b5c9b1f8bf2ccb2847f24530026f26dd223de4ca0

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.19.2-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: numpy-1.19.2-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 12.3 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.5

File hashes

Hashes for numpy-1.19.2-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 4339741994c775396e1a274dba3609c69ab0f16056c1077f18979bec2a2c2e6e
MD5 3b61953b421460abc7d2ecb4df4060bc
BLAKE2b-256 6194772c443200b7943576ab5b1815446710aecc480a5990bde702f0b89d4c04

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.19.2-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.19.2-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 13.4 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.5

File hashes

Hashes for numpy-1.19.2-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 3733640466733441295b0d6d3dcbf8e1ffa7e897d4d82903169529fd3386919a
MD5 bfe6c2053a7a792097df912d1175ef7e
BLAKE2b-256 b8e5a64ef44a85397ba3c377f6be9c02f3cb3e18023f8c89850dd319e7945521

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.19.2-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.19.2-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 11.5 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.5

File hashes

Hashes for numpy-1.19.2-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 e6ddbdc5113628f15de7e4911c02aed74a4ccff531842c583e5032f6e5a179bd
MD5 3e307eca6c448bbe30e4c1dc99824642
BLAKE2b-256 65d2f01fb5e203befe4f4bc87667e2758774726d9d8cb8602ef6cbc8d6cbdf24

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.19.2-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.19.2-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 15.3 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.5

File hashes

Hashes for numpy-1.19.2-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b594f76771bc7fc8a044c5ba303427ee67c17a09b36e1fa32bde82f5c419d17a
MD5 b74295cbb5b1c98f46f26e13c0fca0ea
BLAKE2b-256 be8e800113bd3a0c9195b24574b8922ad92be96278028833c389b69a8b14f657

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page