Skip to main content

NumPy is the fundamental package for array computing with Python.

Project description

It provides:

  • a powerful N-dimensional array object

  • sophisticated (broadcasting) functions

  • tools for integrating C/C++ and Fortran code

  • useful linear algebra, Fourier transform, and random number capabilities

  • and much more

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.

All NumPy wheels distributed on PyPI are BSD licensed.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.20.1.zip (7.8 MB view details)

Uploaded Source

Built Distributions

numpy-1.20.1-pp37-pypy37_pp73-manylinux2010_x86_64.whl (14.7 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

numpy-1.20.1-cp39-cp39-win_amd64.whl (13.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

numpy-1.20.1-cp39-cp39-win32.whl (11.4 MB view details)

Uploaded CPython 3.9 Windows x86

numpy-1.20.1-cp39-cp39-manylinux2014_aarch64.whl (12.7 MB view details)

Uploaded CPython 3.9

numpy-1.20.1-cp39-cp39-manylinux2010_x86_64.whl (15.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

numpy-1.20.1-cp39-cp39-manylinux2010_i686.whl (13.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

numpy-1.20.1-cp39-cp39-macosx_10_9_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

numpy-1.20.1-cp38-cp38-win_amd64.whl (13.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

numpy-1.20.1-cp38-cp38-win32.whl (11.4 MB view details)

Uploaded CPython 3.8 Windows x86

numpy-1.20.1-cp38-cp38-manylinux2014_aarch64.whl (12.7 MB view details)

Uploaded CPython 3.8

numpy-1.20.1-cp38-cp38-manylinux2010_x86_64.whl (15.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

numpy-1.20.1-cp38-cp38-manylinux2010_i686.whl (13.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

numpy-1.20.1-cp38-cp38-manylinux1_x86_64.whl (13.7 MB view details)

Uploaded CPython 3.8

numpy-1.20.1-cp38-cp38-manylinux1_i686.whl (12.0 MB view details)

Uploaded CPython 3.8

numpy-1.20.1-cp38-cp38-macosx_10_9_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

numpy-1.20.1-cp37-cp37m-win_amd64.whl (13.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

numpy-1.20.1-cp37-cp37m-win32.whl (11.3 MB view details)

Uploaded CPython 3.7m Windows x86

numpy-1.20.1-cp37-cp37m-manylinux2014_aarch64.whl (12.6 MB view details)

Uploaded CPython 3.7m

numpy-1.20.1-cp37-cp37m-manylinux2010_x86_64.whl (15.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

numpy-1.20.1-cp37-cp37m-manylinux2010_i686.whl (13.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

numpy-1.20.1-cp37-cp37m-manylinux1_x86_64.whl (13.7 MB view details)

Uploaded CPython 3.7m

numpy-1.20.1-cp37-cp37m-manylinux1_i686.whl (12.1 MB view details)

Uploaded CPython 3.7m

numpy-1.20.1-cp37-cp37m-macosx_10_9_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file numpy-1.20.1.zip.

File metadata

  • Download URL: numpy-1.20.1.zip
  • Upload date:
  • Size: 7.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.1.zip
Algorithm Hash digest
SHA256 3bc63486a870294683980d76ec1e3efc786295ae00128f9ea38e2c6e74d5a60a
MD5 30ea1c7868e73eeff2c86ac465311220
BLAKE2b-256 d248f445be426ccd9b2fb64155ac6730c7212358882e589cd3717477d739d9ff

See more details on using hashes here.

File details

Details for the file numpy-1.20.1-pp37-pypy37_pp73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: numpy-1.20.1-pp37-pypy37_pp73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 14.7 MB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.1-pp37-pypy37_pp73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9eb551d122fadca7774b97db8a112b77231dcccda8e91a5bc99e79890797175e
MD5 ed2c81132119fb3c7f73c6a2de306058
BLAKE2b-256 93e9178a9c6b27a329629c715371a43c6082a47a9577106afd7427e8074d39ac

See more details on using hashes here.

File details

Details for the file numpy-1.20.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numpy-1.20.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 13.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9c94cab5054bad82a70b2e77741271790304651d584e2cdfe2041488e753863b
MD5 86f9d3f358e7d7896e713bce99f17fdd
BLAKE2b-256 abbb695066483b2329d0cfa3658cad0b1c007539d5247c054033a171b03cefa0

See more details on using hashes here.

File details

Details for the file numpy-1.20.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: numpy-1.20.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 11.4 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 12e4ba5c6420917571f1a5becc9338abbde71dd811ce40b37ba62dec7b39af6d
MD5 a78c863323e0f56210c2e1acaad1bc22
BLAKE2b-256 f4163b65497b1923244ebb65336990dfe46b243ec4c0b9605aebabb4001d33c4

See more details on using hashes here.

File details

Details for the file numpy-1.20.1-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

  • Download URL: numpy-1.20.1-cp39-cp39-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 12.7 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.1-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 66b467adfcf628f66ea4ac6430ded0614f5cc06ba530d09571ea404789064adc
MD5 352243d4285970e45d825024ca566d47
BLAKE2b-256 03ae8d4f4d591a4cb8dca743cbda28c6d4ce0debe8787e32c58672385252d176

See more details on using hashes here.

File details

Details for the file numpy-1.20.1-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: numpy-1.20.1-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 15.4 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.1-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 032be656d89bbf786d743fee11d01ef318b0781281241997558fa7950028dd29
MD5 234d57c1a7b1f8b99c054a7a71a51cbe
BLAKE2b-256 26569bc75b9038bf8560629c888db022dd985101b24f1e79afaf5bfb48138b34

See more details on using hashes here.

File details

Details for the file numpy-1.20.1-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: numpy-1.20.1-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 13.3 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.1-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 89e5336f2bec0c726ac7e7cdae181b325a9c0ee24e604704ed830d241c5e47ff
MD5 72282fefe58650c6e7cc41f5b37b8662
BLAKE2b-256 4f4aa5ece8a86866ee8e4438f342f84a848c796782c30e9901d7dd84f9182e3b

See more details on using hashes here.

File details

Details for the file numpy-1.20.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.20.1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 16.1 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 104f5e90b143dbf298361a99ac1af4cf59131218a045ebf4ee5990b83cff5fab
MD5 c123dd10788ea9ff788d735cbee444c5
BLAKE2b-256 92cbf7344b3fd82809226ae26e468f801e1199f88edd0686b7ebc4ded622acf2

See more details on using hashes here.

File details

Details for the file numpy-1.20.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: numpy-1.20.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 13.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 13adf545732bb23a796914fe5f891a12bd74cf3d2986eed7b7eba2941eea1590
MD5 5164a32e7a00a2b285302b563eb58afe
BLAKE2b-256 884adb4d3d191d39ae5f63b830bdea1c2d41619e3a78af38fbe1d822ca0002da

See more details on using hashes here.

File details

Details for the file numpy-1.20.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: numpy-1.20.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 11.4 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 c91ec9569facd4757ade0888371eced2ecf49e7982ce5634cc2cf4e7331a4b14
MD5 178315c579c0a70285b8ee502eb498af
BLAKE2b-256 a69ce84905fc3151868dd489ca41202c4217dde2795962b3f1b790966ca8cd44

See more details on using hashes here.

File details

Details for the file numpy-1.20.1-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

  • Download URL: numpy-1.20.1-cp38-cp38-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 12.7 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.1-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 72251e43ac426ff98ea802a931922c79b8d7596480300eb9f1b1e45e0543571e
MD5 5cf541a0d5af3d5812d2970a427075fb
BLAKE2b-256 4e8831b6c3f59223946ee1a10572af74cbd6062ef99a602c5bd7831a41f8fe64

See more details on using hashes here.

File details

Details for the file numpy-1.20.1-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: numpy-1.20.1-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 15.4 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.1-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7199109fa46277be503393be9250b983f325880766f847885607d9b13848f257
MD5 f5d6c77c898537017e64ee30b243fdca
BLAKE2b-256 c7e6dccac76b7e825915ffb906beeba5a953597b6cfe1fe686b5276e122cb07c

See more details on using hashes here.

File details

Details for the file numpy-1.20.1-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: numpy-1.20.1-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 13.3 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.1-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 c26287dfc888cf1e65181f39ea75e11f42ffc4f4529e5bd19add57ad458996e2
MD5 bf578b783e36d3feb3344973306a9f96
BLAKE2b-256 e1714f686536c5f10e99391bacd59ae6d731fc407e305ac0cd63e956220c2dc6

See more details on using hashes here.

File details

Details for the file numpy-1.20.1-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.20.1-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 13.7 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.1-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 125a0e10ddd99a874fd357bfa1b636cd58deb78ba4a30b5ddb09f645c3512e04
MD5 483f43a62c7e32ae991990786da90de1
BLAKE2b-256 2b5f63eeb72fb4d0083aa577f69c1797633b1c9c7e1e4abd15c9dc1b0768e84f

See more details on using hashes here.

File details

Details for the file numpy-1.20.1-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.20.1-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 12.0 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.1-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 60759ab15c94dd0e1ed88241fd4fa3312db4e91d2c8f5a2d4cf3863fad83d65b
MD5 f254e98e92b3054c567b6220b37b81d3
BLAKE2b-256 20b6ae0cd3ec3a22cb5aca878bf29f91c275665dae8368a92c8c157e5312cea4

See more details on using hashes here.

File details

Details for the file numpy-1.20.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.20.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 16.0 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a1d7995d1023335e67fb070b2fae6f5968f5be3802b15ad6d79d81ecaa014fe0
MD5 17f4dae5a0d143b46345a9cf1a8c8dec
BLAKE2b-256 082342b54a83abd4cb43778b876750762877e638af1dd877812f69a5f3604e0b

See more details on using hashes here.

File details

Details for the file numpy-1.20.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.20.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 13.6 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 89f937b13b8dd17b0099c7c2e22066883c86ca1575a975f754babc8fbf8d69a9
MD5 899488c55824f02a7a6f0451fc86f63f
BLAKE2b-256 3b8f68b72c57e59591925432f4615309732d5fc5ec0bb0890540e2aa1557172f

See more details on using hashes here.

File details

Details for the file numpy-1.20.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: numpy-1.20.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 11.3 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 3d3087e24e354c18fb35c454026af3ed8997cfd4997765266897c68d724e4845
MD5 81051f1e7a79eea8a5aaf5718114ce3a
BLAKE2b-256 88e4c8b7d651de8cfe97e2552e8be1ab1daec0a5e24bd05083eb93f93a704fe4

See more details on using hashes here.

File details

Details for the file numpy-1.20.1-cp37-cp37m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: numpy-1.20.1-cp37-cp37m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 12.6 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.1-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b9410c0b6fed4a22554f072a86c361e417f0258838957b78bd063bde2c7f841f
MD5 26399d3ededc53b354de78f977a6197e
BLAKE2b-256 403c40ffccb474dfe407a55f6707decc2666b68c0d586b561415a2fbe421dee2

See more details on using hashes here.

File details

Details for the file numpy-1.20.1-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: numpy-1.20.1-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 15.3 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.1-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ecb5b74c702358cdc21268ff4c37f7466357871f53a30e6f84c686952bef16a9
MD5 8cee88f9683d208686081522609a8726
BLAKE2b-256 708a064b4077e3d793f877e3b77aa64f56fa49a4d37236a53f78ee28be009a16

See more details on using hashes here.

File details

Details for the file numpy-1.20.1-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: numpy-1.20.1-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 13.3 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.1-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 4ed8e96dc146e12c1c5cdd6fb9fd0757f2ba66048bf94c5126b7efebd12d0090
MD5 55ec954fc598c72b2bbf57bfa8b2a701
BLAKE2b-256 b58cc3f1d997d7a8b87e3a769556dcbffd7c8c94dbb8cc3103f7e0d11a6f2429

See more details on using hashes here.

File details

Details for the file numpy-1.20.1-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.20.1-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 13.7 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2d7e27442599104ee08f4faed56bb87c55f8b10a5494ac2ead5c98a4b289e61f
MD5 493c17647c05ca5043bcbab1ac266a74
BLAKE2b-256 65b90b02ffd2689cbfa5d1da09a59378b626768386add3b654718d43d97e0ef1

See more details on using hashes here.

File details

Details for the file numpy-1.20.1-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.20.1-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 12.1 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.1-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 65410c7f4398a0047eea5cca9b74009ea61178efd78d1be9847fac1d6716ec1e
MD5 f0bf3a78d6b3a169e5a7fb2637f7fd87
BLAKE2b-256 dd226d804c45209646c49fd86d40cb20fab8077aae4cf66a1f42b97d943d527b

See more details on using hashes here.

File details

Details for the file numpy-1.20.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.20.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 16.0 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ae61f02b84a0211abb56462a3b6cd1e7ec39d466d3160eb4e1da8bf6717cdbeb
MD5 c4748f4f8f703c5e96027407eca02b08
BLAKE2b-256 6830a8ce4cb0c084cc1442408807dde60f9796356ea056ca6ef81c865a3d4e62

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page