Skip to main content

NumPy is the fundamental package for array computing with Python.

Project description

It provides:

  • a powerful N-dimensional array object

  • sophisticated (broadcasting) functions

  • tools for integrating C/C++ and Fortran code

  • useful linear algebra, Fourier transform, and random number capabilities

  • and much more

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.

All NumPy wheels distributed on PyPI are BSD licensed.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.20.2.zip (7.8 MB view details)

Uploaded Source

Built Distributions

numpy-1.20.2-pp37-pypy37_pp73-manylinux2010_x86_64.whl (14.7 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

numpy-1.20.2-cp39-cp39-win_amd64.whl (13.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

numpy-1.20.2-cp39-cp39-win32.whl (11.4 MB view details)

Uploaded CPython 3.9 Windows x86

numpy-1.20.2-cp39-cp39-manylinux2014_aarch64.whl (12.7 MB view details)

Uploaded CPython 3.9

numpy-1.20.2-cp39-cp39-manylinux2010_x86_64.whl (15.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

numpy-1.20.2-cp39-cp39-manylinux2010_i686.whl (13.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

numpy-1.20.2-cp39-cp39-macosx_10_9_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

numpy-1.20.2-cp38-cp38-win_amd64.whl (13.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

numpy-1.20.2-cp38-cp38-win32.whl (11.4 MB view details)

Uploaded CPython 3.8 Windows x86

numpy-1.20.2-cp38-cp38-manylinux2014_aarch64.whl (12.7 MB view details)

Uploaded CPython 3.8

numpy-1.20.2-cp38-cp38-manylinux2010_x86_64.whl (15.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

numpy-1.20.2-cp38-cp38-manylinux2010_i686.whl (13.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

numpy-1.20.2-cp38-cp38-manylinux1_x86_64.whl (13.7 MB view details)

Uploaded CPython 3.8

numpy-1.20.2-cp38-cp38-manylinux1_i686.whl (12.0 MB view details)

Uploaded CPython 3.8

numpy-1.20.2-cp38-cp38-macosx_10_9_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

numpy-1.20.2-cp37-cp37m-win_amd64.whl (13.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

numpy-1.20.2-cp37-cp37m-win32.whl (11.3 MB view details)

Uploaded CPython 3.7m Windows x86

numpy-1.20.2-cp37-cp37m-manylinux2014_aarch64.whl (12.7 MB view details)

Uploaded CPython 3.7m

numpy-1.20.2-cp37-cp37m-manylinux2010_x86_64.whl (15.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

numpy-1.20.2-cp37-cp37m-manylinux2010_i686.whl (13.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

numpy-1.20.2-cp37-cp37m-manylinux1_x86_64.whl (13.8 MB view details)

Uploaded CPython 3.7m

numpy-1.20.2-cp37-cp37m-manylinux1_i686.whl (12.1 MB view details)

Uploaded CPython 3.7m

numpy-1.20.2-cp37-cp37m-macosx_10_9_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file numpy-1.20.2.zip.

File metadata

  • Download URL: numpy-1.20.2.zip
  • Upload date:
  • Size: 7.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.2

File hashes

Hashes for numpy-1.20.2.zip
Algorithm Hash digest
SHA256 878922bf5ad7550aa044aa9301d417e2d3ae50f0f577de92051d739ac6096cee
MD5 5e1b381630af4d18db0fedd56b6d8da2
BLAKE2b-256 82a81e0f86ae3f13f7ce260e9f782764c16559917f24382c74edfb52149897de

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.20.2-pp37-pypy37_pp73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: numpy-1.20.2-pp37-pypy37_pp73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 14.7 MB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.2

File hashes

Hashes for numpy-1.20.2-pp37-pypy37_pp73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 97ce8b8ace7d3b9288d88177e66ee75480fb79b9cf745e91ecfe65d91a856042
MD5 67704047e60c2b280f7e9f42400cca91
BLAKE2b-256 1648b6b07eeb66691a2d43c8d315717fed5b9136db9afd41cc8ae124eaeedbd1

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.20.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numpy-1.20.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 13.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.2

File hashes

Hashes for numpy-1.20.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 924dc3f83de20437de95a73516f36e09918e9c9c18d5eac520062c49191025fb
MD5 abcd17ffd3b29014ff15e93a74c2c3d6
BLAKE2b-256 425393d14f54f202513ebae2944fd1906b662624d9e57240ca46c46fd2f9b78c

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.20.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: numpy-1.20.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 11.4 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.2

File hashes

Hashes for numpy-1.20.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 780ae5284cb770ade51d4b4a7dce4faa554eb1d88a56d0e8b9f35fca9b0270ff
MD5 a3024059b52e7688d3c98b82e2f2688e
BLAKE2b-256 4b930d48f6283d30ad13ce5c9b910435749b5e862b8c86756413f6c2e58d6164

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.20.2-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

  • Download URL: numpy-1.20.2-cp39-cp39-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 12.7 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.2

File hashes

Hashes for numpy-1.20.2-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6e51e417d9ae2e7848314994e6fc3832c9d426abce9328cf7571eefceb43e6c9
MD5 b6cb08e8f56accedc4fdc29720ffb380
BLAKE2b-256 0c141210d50798fb0f5482e19dc0739a0cd820e05f8bae84ea226e2b02026504

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.20.2-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: numpy-1.20.2-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 15.4 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.2

File hashes

Hashes for numpy-1.20.2-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 377751954da04d4a6950191b20539066b4e19e3b559d4695399c5e8e3e683bf6
MD5 2c9463187e6a1a0245ed4a2db8e8e656
BLAKE2b-256 f37ad7e9a18ff5c5c63a1b4bd4094f6715cce535f3501dbae02a9410e0083496

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.20.2-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: numpy-1.20.2-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 13.3 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.2

File hashes

Hashes for numpy-1.20.2-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 abc81829c4039e7e4c30f7897938fa5d4916a09c2c7eb9b244b7a35ddc9656f4
MD5 139fef5109539031e570aee9aa3090bf
BLAKE2b-256 ac6015298d3795085c34336cad7a85e69e982bf66d8dc3963739b8c99a370fb7

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.20.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.20.2-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 16.1 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.2

File hashes

Hashes for numpy-1.20.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4703b9e937df83f5b6b7447ca5912b5f5f297aba45f91dbbbc63ff9278c7aa98
MD5 b1b03999df657ccd4e65ff6abcf7e042
BLAKE2b-256 5b95da16a3e28733eb6affa81f4114722788fe599cff90692961869df1cfd8b8

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.20.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: numpy-1.20.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 13.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.2

File hashes

Hashes for numpy-1.20.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 471c0571d0895c68da309dacee4e95a0811d0a9f9f532a48dc1bea5f3b7ad2b7
MD5 8aaa91a51b79556643ad93cb1d55b7d3
BLAKE2b-256 89c3a0fa36e9fea68f782d3ce5eba4187d090ec81db035e356c8046713b22a1f

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.20.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: numpy-1.20.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 11.4 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.2

File hashes

Hashes for numpy-1.20.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 6c915ee7dba1071554e70a3664a839fbc033e1d6528199d4621eeaaa5487ccd2
MD5 8c70e309be1ae43d2938895b56ffbdb7
BLAKE2b-256 800596c77b9e6070402288250c3f478faaa80a09db359d02e31866bf5cedff76

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.20.2-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

  • Download URL: numpy-1.20.2-cp38-cp38-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 12.7 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.2

File hashes

Hashes for numpy-1.20.2-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c73a7975d77f15f7f68dacfb2bca3d3f479f158313642e8ea9058eea06637931
MD5 0a9202dfd47fb02c8eab9f71f084633c
BLAKE2b-256 89ac0dfc3a7983a95d2712090a71c1a13a6a07fb25535ebf075a938b75f88e89

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.20.2-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: numpy-1.20.2-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 15.4 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.2

File hashes

Hashes for numpy-1.20.2-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 edb1f041a9146dcf02cd7df7187db46ab524b9af2515f392f337c7cbbf5b52cd
MD5 8ed52b7194b0953d0b04b88fbabea1ac
BLAKE2b-256 75f660e7d3a1da53a9979f37931d3cc619211accb339df06af8b387889b8d6ba

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.20.2-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: numpy-1.20.2-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 13.3 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.2

File hashes

Hashes for numpy-1.20.2-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 e8e4fbbb7e7634f263c5b0150a629342cc19b47c5eba8d1cd4363ab3455ab576
MD5 e8ce1857f017bffeed46b003a0385b11
BLAKE2b-256 93fdef166ccb1db66034c1f9cd0aa167eb334554021e1641e8c89f08fab195c4

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.20.2-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.20.2-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 13.7 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.2

File hashes

Hashes for numpy-1.20.2-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2428b109306075d89d21135bdd6b785f132a1f5a3260c371cee1fae427e12727
MD5 58c61ea025646c391788f7bc7f681fa5
BLAKE2b-256 fd67ea80d7f693a027854e34a44a4c3e91e0fcdfaa5e8283e7b9c9ee0056c09f

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.20.2-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.20.2-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 12.0 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.2

File hashes

Hashes for numpy-1.20.2-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 aa046527c04688af680217fffac61eec2350ef3f3d7320c07fd33f5c6e7b4d5f
MD5 518013677b05371bbe7e1d6fa4ef61aa
BLAKE2b-256 b88a0838dfb32bfa44862f9b50251cd1af812b5dd9b94a07289f9f08c82383d6

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.20.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.20.2-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 16.0 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.2

File hashes

Hashes for numpy-1.20.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 719656636c48be22c23641859ff2419b27b6bdf844b36a2447cb39caceb00935
MD5 321aa118fbd40fe53a7c82557f3f2772
BLAKE2b-256 af61aac213b70a1d719364a2a2e0e0627dba8b15565576ac82cc3ad044fdbd74

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.20.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.20.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 13.6 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.2

File hashes

Hashes for numpy-1.20.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 bad70051de2c50b1a6259a6df1daaafe8c480ca98132da98976d8591c412e737
MD5 b2d0fa9383776ab68a1bbefc84331fc1
BLAKE2b-256 7d3f152a89cfdacbf747066268a93aae7d1911efc89abcbcf851f16d7881b85e

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.20.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: numpy-1.20.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 11.3 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.2

File hashes

Hashes for numpy-1.20.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 d76061ae5cab49b83a8cf3feacefc2053fac672728802ac137dd8c4123397677
MD5 e9b8e30a5c62f003835b374dbc1c9031
BLAKE2b-256 73eff8768261693c32bfffdbf640b9461948639396c3014163523f19bc44ce64

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.20.2-cp37-cp37m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: numpy-1.20.2-cp37-cp37m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 12.7 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.2

File hashes

Hashes for numpy-1.20.2-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d15007f857d6995db15195217afdbddfcd203dfaa0ba6878a2f580eaf810ecd6
MD5 5746efbd42db03518a51adbacbc70fa7
BLAKE2b-256 f2b0f92de045f992cb4756c560cb0f6211f8e58b924edfd3a42bfd4811e4eba7

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.20.2-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: numpy-1.20.2-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 15.3 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.2

File hashes

Hashes for numpy-1.20.2-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 61d5b4cf73622e4d0c6b83408a16631b670fc045afd6540679aa35591a17fe6d
MD5 65ffbc38abe1c1b92eb3bebf3484f679
BLAKE2b-256 73ef8967d406f3f85018ceb5efab50431e901683188f1741ceb053efcab26c87

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.20.2-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: numpy-1.20.2-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 13.3 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.2

File hashes

Hashes for numpy-1.20.2-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 9c0fab855ae790ca74b27e55240fe4f2a36a364a3f1ebcfd1fb5ac4088f1cec3
MD5 97546a3cf4ddcc9fcc7eb41b9558f1de
BLAKE2b-256 256e45627897b9e8d44c13543a02474ed04b48d08c7e7a90a37098b38ae353c3

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.20.2-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.20.2-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 13.8 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.2

File hashes

Hashes for numpy-1.20.2-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9cab23439eb1ebfed1aaec9cd42b7dc50fc96d5cd3147da348d9161f0501ada5
MD5 2879728d4f815f07c7d133347deefe45
BLAKE2b-256 a9035b216f6a55ffc6bdac3ad3a896c58d4f17d99e18ff82fc68363df7d6a7b3

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.20.2-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.20.2-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 12.1 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.2

File hashes

Hashes for numpy-1.20.2-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 a8e6859913ec8eeef3dbe9aed3bf475347642d1cdd6217c30f28dee8903528e6
MD5 4cacfe903c60827c0e44d0bed7e3a760
BLAKE2b-256 6812c3facc5076cbebb9362220be40d19aaf87be8f7122bf83675889d7140b2c

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.20.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.20.2-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 16.0 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.2

File hashes

Hashes for numpy-1.20.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e9459f40244bb02b2f14f6af0cd0732791d72232bbb0dc4bab57ef88e75f6935
MD5 a95718df123e0726a7dac5043050b251
BLAKE2b-256 a51eebc5066df2f05e9a74271163d688258cd1b9c98f375f921834f42ed30cef

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page