Skip to main content

NumPy is the fundamental package for array computing with Python.

Project description

It provides:

  • a powerful N-dimensional array object

  • sophisticated (broadcasting) functions

  • tools for integrating C/C++ and Fortran code

  • useful linear algebra, Fourier transform, and random number capabilities

  • and much more

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.

All NumPy wheels distributed on PyPI are BSD licensed.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.21.1.zip (10.3 MB view details)

Uploaded Source

Built Distributions

numpy-1.21.1-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (15.2 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

numpy-1.21.1-cp39-cp39-win_amd64.whl (14.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

numpy-1.21.1-cp39-cp39-win32.whl (11.7 MB view details)

Uploaded CPython 3.9 Windows x86

numpy-1.21.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

numpy-1.21.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (15.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

numpy-1.21.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (13.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

numpy-1.21.1-cp39-cp39-macosx_11_0_arm64.whl (12.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

numpy-1.21.1-cp39-cp39-macosx_10_9_x86_64.whl (17.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

numpy-1.21.1-cp39-cp39-macosx_10_9_universal2.whl (27.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

numpy-1.21.1-cp38-cp38-win_amd64.whl (14.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

numpy-1.21.1-cp38-cp38-win32.whl (11.7 MB view details)

Uploaded CPython 3.8 Windows x86

numpy-1.21.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

numpy-1.21.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (15.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

numpy-1.21.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (13.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

numpy-1.21.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl (14.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ x86-64

numpy-1.21.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (12.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

numpy-1.21.1-cp38-cp38-macosx_11_0_arm64.whl (12.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

numpy-1.21.1-cp38-cp38-macosx_10_9_x86_64.whl (16.9 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

numpy-1.21.1-cp38-cp38-macosx_10_9_universal2.whl (27.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

numpy-1.21.1-cp37-cp37m-win_amd64.whl (14.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

numpy-1.21.1-cp37-cp37m-win32.whl (11.7 MB view details)

Uploaded CPython 3.7m Windows x86

numpy-1.21.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

numpy-1.21.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (15.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

numpy-1.21.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (13.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

numpy-1.21.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (14.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ x86-64

numpy-1.21.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (12.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

numpy-1.21.1-cp37-cp37m-macosx_10_9_x86_64.whl (16.9 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file numpy-1.21.1.zip.

File metadata

  • Download URL: numpy-1.21.1.zip
  • Upload date:
  • Size: 10.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.6

File hashes

Hashes for numpy-1.21.1.zip
Algorithm Hash digest
SHA256 dff4af63638afcc57a3dfb9e4b26d434a7a602d225b42d746ea7fe2edf1342fd
MD5 1d016e05851a4ba85307f3246eb569aa
BLAKE2b-256 0ba7e724c8df240687b5fd62d8c71f1a6709d455c4c09432c7412e3e64f4cbe5

See more details on using hashes here.

File details

Details for the file numpy-1.21.1-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.21.1-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2d4d1de6e6fb3d28781c73fbde702ac97f03d79e4ffd6598b880b2d95d62ead4
MD5 7cff22c1a04fdee710d38bd9468edbf1
BLAKE2b-256 d36df53d9806d307e5d3ef0bb594d9f2236d61cb0f3c7b17edb4f0af69f0585f

See more details on using hashes here.

File details

Details for the file numpy-1.21.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numpy-1.21.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 14.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.6

File hashes

Hashes for numpy-1.21.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 01721eefe70544d548425a07c80be8377096a54118070b8a62476866d5208e33
MD5 4014c63ac2a1c3e1df95f76feb14816e
BLAKE2b-256 bf03bb8a4c7b5a69795e61a21459d1ff1c0730ef0faa1f3dfff525b7c4132347

See more details on using hashes here.

File details

Details for the file numpy-1.21.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: numpy-1.21.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 11.7 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.6

File hashes

Hashes for numpy-1.21.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 88c0b89ad1cc24a5efbb99ff9ab5db0f9a86e9cc50240177a571fbe9c2860ac2
MD5 238930d877b5d8a012b5b1bbc994ebb1
BLAKE2b-256 1e6975d67f070446c87199f7a5aaff2504b4124bedcdcdf30da5f6de0c9e8e89

See more details on using hashes here.

File details

Details for the file numpy-1.21.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.21.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f01f28075a92eede918b965e86e8f0ba7b7797a95aa8d35e1cc8821f5fc3ad6a
MD5 f580b2ce2fb9cead163bab3f1d88fba7
BLAKE2b-256 ce73465ec13dd21a4d66f96e7b8aca027ca965d639654268dba03c1e37f15d03

See more details on using hashes here.

File details

Details for the file numpy-1.21.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.21.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 05a0f648eb28bae4bcb204e6fd14603de2908de982e761a2fc78efe0f19e96e1
MD5 94fa7591ad4e51a85cb17bcec170b986
BLAKE2b-256 2b157c686607db98f151dc2dadcdc4dd9ed39950e8f29d712d3e42b44d1202e5

See more details on using hashes here.

File details

Details for the file numpy-1.21.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

  • Download URL: numpy-1.21.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
  • Upload date:
  • Size: 13.8 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.6

File hashes

Hashes for numpy-1.21.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 8a92c5aea763d14ba9d6475803fc7904bda7decc2a0a68153f587ad82941fec1
MD5 6b9482c5090f532285313ad2cf48d319
BLAKE2b-256 654c194a2f8b8c94f4d401a31a5a0516906829e7ead6f05b0647076680c3f36d

See more details on using hashes here.

File details

Details for the file numpy-1.21.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numpy-1.21.1-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.6

File hashes

Hashes for numpy-1.21.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 25b40b98ebdd272bc3020935427a4530b7d60dfbe1ab9381a39147834e985eac
MD5 33a9c001675f708aebc06f0a653378c1
BLAKE2b-256 3188e67fb244cf5998c1e8fa5eda670ae8265ae0beed0346d5a424cb612fee24

See more details on using hashes here.

File details

Details for the file numpy-1.21.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.21.1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 17.0 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.6

File hashes

Hashes for numpy-1.21.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d9e7912a56108aba9b31df688a4c4f5cb0d9d3787386b87d504762b6754fbb1b
MD5 141701393752d472456d4a15f9a554e4
BLAKE2b-256 605b97dcc2561db2b78201e61fe9e08c39f7ec9edbe412aa70f2fcf65c2813a8

See more details on using hashes here.

File details

Details for the file numpy-1.21.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: numpy-1.21.1-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 27.2 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.6

File hashes

Hashes for numpy-1.21.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d7a4aeac3b94af92a9373d6e77b37691b86411f9745190d2c351f410ab3a791f
MD5 1a730aa7303421f31c2bca5a343010bb
BLAKE2b-256 99607b97b75a121745508a2fd92b5127dc0fe080d026d43b0fcf2863ea50c074

See more details on using hashes here.

File details

Details for the file numpy-1.21.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: numpy-1.21.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 14.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.6

File hashes

Hashes for numpy-1.21.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9749a40a5b22333467f02fe11edc98f022133ee1bfa8ab99bda5e5437b831214
MD5 52386872b66b108de80b5447d0e3f6b1
BLAKE2b-256 0dfc2a55c4d690437e09e44f40fe7a8458a72aef9da01719bd8746002999f782

See more details on using hashes here.

File details

Details for the file numpy-1.21.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: numpy-1.21.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 11.7 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.6

File hashes

Hashes for numpy-1.21.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 978010b68e17150db8765355d1ccdd450f9fc916824e8c4e35ee620590e234cd
MD5 c248a8f07bb458660274eab769dcc1e2
BLAKE2b-256 4551716a08ed750c660ed20edccd22aeeb8c2653c4f6e92dc8b8b0dcf9ff432a

See more details on using hashes here.

File details

Details for the file numpy-1.21.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.21.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0318c465786c1f63ac05d7c4dbcecd4d2d7e13f0959b01b534ea1e92202235c5
MD5 f060727f195388df3f3c1e2c43a8d247
BLAKE2b-256 957ada016166264ccc417f58ba097c3cfa995b77e87d2d3c5424c9e5dfffa68d

See more details on using hashes here.

File details

Details for the file numpy-1.21.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.21.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 791492091744b0fe390a6ce85cc1bf5149968ac7d5f0477288f78c89b385d9af
MD5 e5e0e271fb18986887920f24b9ad8ec3
BLAKE2b-256 a03affacce6c7d7d980a4aebb51cacf91e1443d4317aa29630c7d3054fb64e2e

See more details on using hashes here.

File details

Details for the file numpy-1.21.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

  • Download URL: numpy-1.21.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
  • Upload date:
  • Size: 13.7 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.6

File hashes

Hashes for numpy-1.21.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 8a326af80e86d0e9ce92bcc1e65c8ff88297de4fa14ee936cb2293d414c9ec63
MD5 d87ed548450f324a3a6a3a230991e90a
BLAKE2b-256 b8981deff46537aa544bd6ffafb4405d0f57fe49308147444e27ab2fc3ca82ba

See more details on using hashes here.

File details

Details for the file numpy-1.21.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.21.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
  • Upload date:
  • Size: 14.1 MB
  • Tags: CPython 3.8, manylinux: glibc 2.5+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.6

File hashes

Hashes for numpy-1.21.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 91c6f5fc58df1e0a3cc0c3a717bb3308ff850abdaa6d2d802573ee2b11f674a8
MD5 dac4489fdaeffd24d402a555e61b4087
BLAKE2b-256 9aee07eb4eb76620d95af51f16481dca8b9d1e1d9edae8cf60d5143aad270764

See more details on using hashes here.

File details

Details for the file numpy-1.21.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.21.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: CPython 3.8, manylinux: glibc 2.5+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.6

File hashes

Hashes for numpy-1.21.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 9a513bd9c1551894ee3d31369f9b07460ef223694098cf27d399513415855b68
MD5 26b0cc05d6f59241f401c16a6fe9300e
BLAKE2b-256 3b11445c95be2f846be94d2425f8f1f4c9ad2bcbbb9ad425c8a9f7394f325bdb

See more details on using hashes here.

File details

Details for the file numpy-1.21.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numpy-1.21.1-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 12.3 MB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.6

File hashes

Hashes for numpy-1.21.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4a3d5fb89bfe21be2ef47c0614b9c9c707b7362386c9a3ff1feae63e0267ccb6
MD5 2840e0ed51c8ebfb6fded7f1acfed810
BLAKE2b-256 de4b5b243d909933c387bb5253a91706a7aa49b0550147e0b144b0f8a842e0f0

See more details on using hashes here.

File details

Details for the file numpy-1.21.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.21.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 16.9 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.6

File hashes

Hashes for numpy-1.21.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 635e6bd31c9fb3d475c8f44a089569070d10a9ef18ed13738b03049280281267
MD5 37fb814042195516db4c5eedc23f65ef
BLAKE2b-256 1ef4a7bcb5942458656882195d71df967bc74c01452cb445c10c23c40ca6a8ef

See more details on using hashes here.

File details

Details for the file numpy-1.21.1-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: numpy-1.21.1-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 27.1 MB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.6

File hashes

Hashes for numpy-1.21.1-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 95b995d0c413f5d0428b3f880e8fe1660ff9396dcd1f9eedbc311f37b5652e16
MD5 f974f7a90567e082b16817e1218eb059
BLAKE2b-256 16c971124564deb3fd4c7572d7aa830482e8901eb84938f3629185abff60d911

See more details on using hashes here.

File details

Details for the file numpy-1.21.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.21.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 14.0 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.6

File hashes

Hashes for numpy-1.21.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 7a708a79c9a9d26904d1cca8d383bf869edf6f8e7650d85dbc77b041e8c5a0f8
MD5 d6ab781ad4537a818663a37392bdf647
BLAKE2b-256 eba91e4215043cac5ffc6a5ab1f2e0e58a680fc8fd19e28eb28c01e90aeace3e

See more details on using hashes here.

File details

Details for the file numpy-1.21.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: numpy-1.21.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 11.7 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.6

File hashes

Hashes for numpy-1.21.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 73101b2a1fef16602696d133db402a7e7586654682244344b8329cdcbbb82172
MD5 b8eff5ba6bb920f3e65409abcfe7a55e
BLAKE2b-256 9f4afc96aecce86b0e892a574680305f9d865c9845d1ca512a936c676f3c9f8b

See more details on using hashes here.

File details

Details for the file numpy-1.21.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.21.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1412aa0aec3e00bc23fbb8664d76552b4efde98fb71f60737c83efbac24112f1
MD5 2e256d7862047967f2a7dbff8b8e9d6c
BLAKE2b-256 8718608e04350d78bb3201a8ac2777b9a77e024218ec2a7f64db9b7130c714fc

See more details on using hashes here.

File details

Details for the file numpy-1.21.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.21.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a75b4498b1e93d8b700282dc8e655b8bd559c0904b3910b144646dbbbc03e062
MD5 84d7f8534fa3ce1a8c2e2eab18e514de
BLAKE2b-256 f9d518336e9828d2f07beb0bcd3849c660001bedea50e6219627315968900ad6

See more details on using hashes here.

File details

Details for the file numpy-1.21.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for numpy-1.21.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 fd7d7409fa643a91d0a05c7554dd68aa9c9bb16e186f6ccfe40d6e003156e33a
MD5 946e54ec9d174ec90db8ae07a4c4ae2f
BLAKE2b-256 733ee8b555c1230c63ef2e0dbf42fbcb4c2d1444bd5ec8e7eebcff904b922df4

See more details on using hashes here.

File details

Details for the file numpy-1.21.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.21.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
  • Upload date:
  • Size: 14.1 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.5+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.6

File hashes

Hashes for numpy-1.21.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c6a2324085dd52f96498419ba95b5777e40b6bcbc20088fddb9e8cbb58885e8e
MD5 bbe00679ce0ae484bb46776f64e00e32
BLAKE2b-256 b8463f1a1a1f5fa3c0325a407a98396b8ac90e4eaa058420668b4b640729c784

See more details on using hashes here.

File details

Details for the file numpy-1.21.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.21.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.5+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.6

File hashes

Hashes for numpy-1.21.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 e46ceaff65609b5399163de5893d8f2a82d3c77d5e56d976c8b5fb01faa6b671
MD5 4887ff09cc0652f3f1d9e0f40d1add63
BLAKE2b-256 509a54c6c2da63830939bef8be068aece1ac04859fc51428710ad5cd148566fc

See more details on using hashes here.

File details

Details for the file numpy-1.21.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.21.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 16.9 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.6

File hashes

Hashes for numpy-1.21.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 38e8648f9449a549a7dfe8d8755a5979b45b3538520d1e735637ef28e8c2dc50
MD5 d88af78c155cb92ce5535724ed13ed73
BLAKE2b-256 49d2057683bbe4f8cccbd74f9b98dee5b1c5b94c06c115790d4bb50ec31aab77

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page