Skip to main content

NumPy is the fundamental package for array computing with Python.

Project description

It provides:

  • a powerful N-dimensional array object

  • sophisticated (broadcasting) functions

  • tools for integrating C/C++ and Fortran code

  • useful linear algebra, Fourier transform, and random number capabilities

  • and much more

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.

All NumPy wheels distributed on PyPI are BSD licensed.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.21.2.zip (10.3 MB view details)

Uploaded Source

Built Distributions

numpy-1.21.2-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (15.2 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

numpy-1.21.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numpy-1.21.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numpy-1.21.2-cp39-cp39-win_amd64.whl (14.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

numpy-1.21.2-cp39-cp39-win32.whl (11.7 MB view details)

Uploaded CPython 3.9 Windows x86

numpy-1.21.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

numpy-1.21.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (15.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

numpy-1.21.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (13.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

numpy-1.21.2-cp39-cp39-macosx_11_0_arm64.whl (12.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

numpy-1.21.2-cp39-cp39-macosx_10_9_x86_64.whl (17.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

numpy-1.21.2-cp39-cp39-macosx_10_9_universal2.whl (27.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

numpy-1.21.2-cp38-cp38-win_amd64.whl (14.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

numpy-1.21.2-cp38-cp38-win32.whl (11.7 MB view details)

Uploaded CPython 3.8 Windows x86

numpy-1.21.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

numpy-1.21.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (15.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

numpy-1.21.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (13.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

numpy-1.21.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl (14.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ x86-64

numpy-1.21.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (12.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

numpy-1.21.2-cp38-cp38-macosx_11_0_arm64.whl (12.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

numpy-1.21.2-cp38-cp38-macosx_10_9_x86_64.whl (16.9 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

numpy-1.21.2-cp38-cp38-macosx_10_9_universal2.whl (27.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

numpy-1.21.2-cp37-cp37m-win_amd64.whl (14.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

numpy-1.21.2-cp37-cp37m-win32.whl (11.7 MB view details)

Uploaded CPython 3.7m Windows x86

numpy-1.21.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

numpy-1.21.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (15.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

numpy-1.21.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (13.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

numpy-1.21.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (14.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ x86-64

numpy-1.21.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (12.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

numpy-1.21.2-cp37-cp37m-macosx_10_9_x86_64.whl (16.9 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file numpy-1.21.2.zip.

File metadata

  • Download URL: numpy-1.21.2.zip
  • Upload date:
  • Size: 10.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.6

File hashes

Hashes for numpy-1.21.2.zip
Algorithm Hash digest
SHA256 423216d8afc5923b15df86037c6053bf030d15cc9e3224206ef868c2d63dd6dc
MD5 5638d5dae3ca387be562912312db842e
BLAKE2b-256 3abe650f9c091ef71cb01d735775d554e068752d3ff63d7943b26316dc401749

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.21.2-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.21.2-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d96a6a7d74af56feb11e9a443150216578ea07b7450f7c05df40eec90af7f4a7
MD5 8c5d2a0172f6f6861833a355b1bc57b0
BLAKE2b-256 2c444210d16af96fe03f41c64bac2146435dc521a6e0457fdb3b5d15e1844578

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.21.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.21.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 51a7b9db0a2941434cd930dacaafe0fc9da8f3d6157f9d12f761bbde93f46218
MD5 eb09d0bfc0bc39ce3e323182ae779fcb
BLAKE2b-256 520b0bacc59bff3b52ecb276cec6674b751d9d403fc116a11306dc697b449c76

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.21.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.21.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 52a664323273c08f3b473548bf87c8145b7513afd63e4ebba8496ecd3853df13
MD5 c4d72c5f8aff59b5e48face558441e9f
BLAKE2b-256 641d24b83eb738ce77eb014777c1ae6480ad82c7599361735f0cfcb0d4788e57

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.21.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numpy-1.21.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 14.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.6

File hashes

Hashes for numpy-1.21.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b5e8590b9245803c849e09bae070a8e1ff444f45e3f0bed558dd722119eea724
MD5 704f66b7ede6778283c33eea7a5b8b95
BLAKE2b-256 01d96e5f6cbd9d1fc90c6c8d96e70754700ed6f93f90f321f887a3f26bf65715

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.21.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: numpy-1.21.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 11.7 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.6

File hashes

Hashes for numpy-1.21.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 30fc68307c0155d2a75ad19844224be0f2c6f06572d958db4e2053f816b859ad
MD5 eedae53f1929779387476e7842dc5cb3
BLAKE2b-256 a8c5cd1d947f68d7ec6ecdd5fbf651d7b0123a8b403b0b919f537b230ccd8582

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.21.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.21.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b342064e647d099ca765f19672696ad50c953cac95b566af1492fd142283580f
MD5 b8b19e6667e39feef9f7f2e030945199
BLAKE2b-256 01c53ac36428af637b48236a389aca0e39896dd66477d759f6831a593d56d248

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.21.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.21.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5de64950137f3a50b76ce93556db392e8f1f954c2d8207f78a92d1f79aa9f737
MD5 ff4256d8940c6bdce48364af37f99072
BLAKE2b-256 7a4cdd00ce768b0f0f7de5c486cbd9f5b922bc3af2f3a5da30121d7f7dc03130

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.21.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

  • Download URL: numpy-1.21.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
  • Upload date:
  • Size: 13.8 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.6

File hashes

Hashes for numpy-1.21.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 640c1ccfd56724f2955c237b6ccce2e5b8607c3bc1cc51d3933b8c48d1da3723
MD5 809bcd25dc485f31e2c13903d6ac748e
BLAKE2b-256 fe783a18a4a8a24a3fa5ca34ff3b0e855c19503dc6fb625b75a83bc17e4817e3

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.21.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numpy-1.21.2-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.6

File hashes

Hashes for numpy-1.21.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fde50062d67d805bc96f1a9ecc0d37bfc2a8f02b937d2c50824d186aa91f2419
MD5 6e348361f3b8b75267dc27f3a6530944
BLAKE2b-256 e866380373a412dda1f321773b3872dd0d1fcb4ceac7b8c62baf436a31ce4638

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.21.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.21.2-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 17.0 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.6

File hashes

Hashes for numpy-1.21.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 92a0ab128b07799dd5b9077a9af075a63467d03ebac6f8a93e6440abfea4120d
MD5 20beaff42d793cb148621e0230d1b650
BLAKE2b-256 24adb1fc85dda2d40af2b28c70f741df80ee0e243502b61b33baf7fa150760f8

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.21.2-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: numpy-1.21.2-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 27.2 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.6

File hashes

Hashes for numpy-1.21.2-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 dd0e3651d210068d13e18503d75aaa45656eef51ef0b261f891788589db2cc38
MD5 b6aee8cf57f84da10b38566bde93056c
BLAKE2b-256 cf964a0eed13a185da6f7e48f76739de86c21661fe6c2738f4630a628d5dcbcf

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.21.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: numpy-1.21.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 14.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.6

File hashes

Hashes for numpy-1.21.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 466e682264b14982012887e90346d33435c984b7fead7b85e634903795c8fdb0
MD5 8a36334d9d183b1ef3e4d3d23b7d0cb8
BLAKE2b-256 db67aa68c92b976b42403c9742b823bb74a007ed8f332764158f68998d260a01

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.21.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: numpy-1.21.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 11.7 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.6

File hashes

Hashes for numpy-1.21.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 e167b9805de54367dcb2043519382be541117503ce99e3291cc9b41ca0a83557
MD5 351b5115ee56f1b598bfa9b479a2492c
BLAKE2b-256 db223f849b40d202bef2631c8d2234e6156a5c749e0dc9079d13bea95e9d231c

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.21.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.21.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 550564024dc5ceee9421a86fc0fb378aa9d222d4d0f858f6669eff7410c89bef
MD5 89e2268d8607b6b363337fafde9fe6c9
BLAKE2b-256 364b4116a1b27e02d186af2220945a549d09a38092944c55938f0af9e2e7b06b

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.21.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.21.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7fdc7689daf3b845934d67cb221ba8d250fdca20ac0334fea32f7091b93f00d3
MD5 155a35f990b2e673cb7b361c83fa2313
BLAKE2b-256 aa69260a4a1cc89cc00b51f432db048c396952f5c05dfa1345a1b3dbd9ea3544

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.21.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

  • Download URL: numpy-1.21.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
  • Upload date:
  • Size: 13.8 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.6

File hashes

Hashes for numpy-1.21.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 e42029e184008a5fd3d819323345e25e2337b0ac7f5c135b7623308530209d57
MD5 3ebfe9bcd744c57d3d189394fbbf04de
BLAKE2b-256 6e7d261701d028b3e610f17fb4454eff7e528547b7ed4fed3bd26dec73ee8d6a

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.21.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.21.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
  • Upload date:
  • Size: 14.1 MB
  • Tags: CPython 3.8, manylinux: glibc 2.5+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.6

File hashes

Hashes for numpy-1.21.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a9da45b748caad72ea4a4ed57e9cd382089f33c5ec330a804eb420a496fa760f
MD5 5bede1a84624d538d97513006f97fc06
BLAKE2b-256 18d30b5dbf3dd99f6a645612dc8cd78c633130139d98afb5303a3ce09723609b

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.21.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.21.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: CPython 3.8, manylinux: glibc 2.5+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.6

File hashes

Hashes for numpy-1.21.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 bf75d5825ef47aa51d669b03ce635ecb84d69311e05eccea083f31c7570c9931
MD5 e13968b5f61a3b2f33d4053da8ceaaf1
BLAKE2b-256 c39f90cfafcb366c1292c646dbf9b2a5cf0b420e34e814acf0484d2f443482fc

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.21.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numpy-1.21.2-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 12.3 MB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.6

File hashes

Hashes for numpy-1.21.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c01b59b33c7c3ba90744f2c695be571a3bd40ab2ba7f3d169ffa6db3cfba614f
MD5 66b5a212ee2fe747cfc19f13dbfc2d15
BLAKE2b-256 1655ac6bb76315448882798d9079dcb012759f9d32c05f827d7c13f7e335d8bb

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.21.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.21.2-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 16.9 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.6

File hashes

Hashes for numpy-1.21.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 209666ce9d4a817e8a4597cd475b71b4878a85fa4b8db41d79fdb4fdee01dde2
MD5 ddef2b45ff5526e6314205108f2e3524
BLAKE2b-256 92565005c13251da910edaa9768840c6dd6a68df45b69f3d026bc43ab1a79f4b

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.21.2-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: numpy-1.21.2-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 27.1 MB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.6

File hashes

Hashes for numpy-1.21.2-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 a5109345f5ce7ddb3840f5970de71c34a0ff7fceb133c9441283bb8250f532a3
MD5 e500c1eae3903b7498886721b835d086
BLAKE2b-256 6d2b167a5fc6d37b65ca9924f748add4d563240ae1505d47e5a28a4d4b19cf31

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.21.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.21.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 14.0 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.6

File hashes

Hashes for numpy-1.21.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b160b9a99ecc6559d9e6d461b95c8eec21461b332f80267ad2c10394b9503496
MD5 6f587dc9ee9ec8700e77df4f3f987911
BLAKE2b-256 3bd73e9f4291aaac0ccd61cd0b3ccfb3a192f3f2d6be8c86a02d0b93811ff1ee

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.21.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: numpy-1.21.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 11.7 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.6

File hashes

Hashes for numpy-1.21.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 f545c082eeb09ae678dd451a1b1dbf17babd8a0d7adea02897a76e639afca310
MD5 ee45e263e6700b745c43511297385fe1
BLAKE2b-256 7990914f2bf7d5bfae92b1b9d8e730b347dacd613008045dd538e18c1c49d56d

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.21.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.21.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 298156f4d3d46815eaf0fcf0a03f9625fc7631692bd1ad851517ab93c3168fc6
MD5 86b755c7ece248e5586a6a58259aa432
BLAKE2b-256 5c61b2f14fb5aa1198fa63c6c90205dc2557df5cacdeb0b16d66abc6af8724b8

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.21.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.21.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 426a00b68b0d21f2deb2ace3c6d677e611ad5a612d2c76494e24a562a930c254
MD5 9acbaf0074af75d66ca8676b16cec03a
BLAKE2b-256 682d0fe6592a96a1da097a33fb87b9618197c8a1801e84c7483fa7b93794a87c

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.21.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for numpy-1.21.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 a55e4d81c4260386f71d22294795c87609164e22b28ba0d435850fbdf82fc0c5
MD5 af7d21992179dfa3669a2a238b94a980
BLAKE2b-256 780117f8c6c865110694ae8e21ad84288860e6487f55f70c967fbbf43dd59f8f

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.21.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.21.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
  • Upload date:
  • Size: 14.1 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.5+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.6

File hashes

Hashes for numpy-1.21.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 805459ad8baaf815883d0d6f86e45b3b0b67d823a8f3fa39b1ed9c45eaf5edf1
MD5 6f23a3050b1482f9708d36928348d75d
BLAKE2b-256 8f3d7247b219c2c3bc5720a0ae963bf384df1f7f39c17330fcff2bd9d8640768

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.21.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.21.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.5+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.6

File hashes

Hashes for numpy-1.21.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 09858463db6dd9f78b2a1a05c93f3b33d4f65975771e90d2cf7aadb7c2f66edf
MD5 b45fbbb0ffabcabcc6dc4cf957713d45
BLAKE2b-256 134349ef25dd73f046f6d5205a5e52532e3b7efa15c42d5098a801bbe6c62cf0

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.21.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.21.2-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 16.9 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.6

File hashes

Hashes for numpy-1.21.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9f2dc79c093f6c5113718d3d90c283f11463d77daa4e83aeeac088ec6a0bda52
MD5 e0bb19ea8cc13a5152085aa42d850077
BLAKE2b-256 e05449206c6aba7d0e7d5a6e2f5b6760a00e35bb705e9d2be007be0a16e4ba40

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page