Skip to main content

NumPy is the fundamental package for array computing with Python.

Project description

It provides:

  • a powerful N-dimensional array object

  • sophisticated (broadcasting) functions

  • tools for integrating C/C++ and Fortran code

  • useful linear algebra, Fourier transform, and random number capabilities

  • and much more

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.

All NumPy wheels distributed on PyPI are BSD licensed.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.21.4.zip (10.6 MB view details)

Uploaded Source

Built Distributions

numpy-1.21.4-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (15.2 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

numpy-1.21.4-cp310-cp310-win_amd64.whl (14.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

numpy-1.21.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numpy-1.21.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numpy-1.21.4-cp310-cp310-macosx_11_0_arm64.whl (12.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numpy-1.21.4-cp310-cp310-macosx_10_9_x86_64.whl (17.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

numpy-1.21.4-cp310-cp310-macosx_10_9_universal2.whl (27.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

numpy-1.21.4-cp39-cp39-win_amd64.whl (14.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

numpy-1.21.4-cp39-cp39-win32.whl (11.7 MB view details)

Uploaded CPython 3.9 Windows x86

numpy-1.21.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

numpy-1.21.4-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (15.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

numpy-1.21.4-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (13.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

numpy-1.21.4-cp39-cp39-macosx_11_0_arm64.whl (12.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

numpy-1.21.4-cp39-cp39-macosx_10_9_x86_64.whl (17.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

numpy-1.21.4-cp39-cp39-macosx_10_9_universal2.whl (27.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

numpy-1.21.4-cp38-cp38-win_amd64.whl (14.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

numpy-1.21.4-cp38-cp38-win32.whl (11.7 MB view details)

Uploaded CPython 3.8 Windows x86

numpy-1.21.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

numpy-1.21.4-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (15.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

numpy-1.21.4-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (13.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

numpy-1.21.4-cp38-cp38-macosx_11_0_arm64.whl (12.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

numpy-1.21.4-cp38-cp38-macosx_10_9_x86_64.whl (16.9 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

numpy-1.21.4-cp38-cp38-macosx_10_9_universal2.whl (27.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

numpy-1.21.4-cp37-cp37m-win_amd64.whl (14.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

numpy-1.21.4-cp37-cp37m-win32.whl (11.7 MB view details)

Uploaded CPython 3.7m Windows x86

numpy-1.21.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

numpy-1.21.4-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (15.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

numpy-1.21.4-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (13.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

numpy-1.21.4-cp37-cp37m-macosx_10_9_x86_64.whl (16.9 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file numpy-1.21.4.zip.

File metadata

  • Download URL: numpy-1.21.4.zip
  • Upload date:
  • Size: 10.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.7

File hashes

Hashes for numpy-1.21.4.zip
Algorithm Hash digest
SHA256 e6c76a87633aa3fa16614b61ccedfae45b91df2767cf097aa9c933932a7ed1e0
MD5 b3c4477a027d5b6fba5e1065064fd076
BLAKE2b-256 fb48b0708ebd7718a8933f0d3937513ef8ef2f4f04529f1f66ca86d873043921

See more details on using hashes here.

File details

Details for the file numpy-1.21.4-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.21.4-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a3deb31bc84f2b42584b8c4001c85d1934dbfb4030827110bc36bfd11509b7bf
MD5 70ca6b591e844fdcb8c22175f094d3b4
BLAKE2b-256 2965806a991e8ac5c30712a064929ede1d3d59d0401a956236eee06665ddcf4b

See more details on using hashes here.

File details

Details for the file numpy-1.21.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numpy-1.21.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 14.0 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.7

File hashes

Hashes for numpy-1.21.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 1403b4e2181fc72664737d848b60e65150f272fe5a1c1cbc16145ed43884065a
MD5 b88a1bc4f08dfb154d5a07d15e387af6
BLAKE2b-256 d7caad29a6597b54b3e39495d99345eadaf86357685cfa1b71454f7120ea6716

See more details on using hashes here.

File details

Details for the file numpy-1.21.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.21.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 615d4e328af7204c13ae3d4df7615a13ff60a49cb0d9106fde07f541207883ca
MD5 5813e7a378a6e3f5c269c23f61eff4d9
BLAKE2b-256 ab942fc54cc791846812318080a4f86f9afcf661891163779684d1dd1fe018f9

See more details on using hashes here.

File details

Details for the file numpy-1.21.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.21.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0b78ecfa070460104934e2caf51694ccd00f37d5e5dbe76f021b1b0b0d221823
MD5 72035d101774fd03beff391927f59aa9
BLAKE2b-256 d5997d0271fac620d938ad4fc06a53d9d42245529a1ced5416dd6744b93afe78

See more details on using hashes here.

File details

Details for the file numpy-1.21.4-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numpy-1.21.4-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.7

File hashes

Hashes for numpy-1.21.4-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e89717274b41ebd568cd7943fc9418eeb49b1785b66031bc8a7f6300463c5898
MD5 719a9053aef01a067ce44ede2281eef9
BLAKE2b-256 5d0a96864521e42ad6a81069a4cc19ae31f6e4eae956ed03970b6174ffdac8b8

See more details on using hashes here.

File details

Details for the file numpy-1.21.4-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.21.4-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 17.0 MB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.7

File hashes

Hashes for numpy-1.21.4-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 69077388c5a4b997442b843dbdc3a85b420fb693ec8e33020bb24d647c164fa5
MD5 9f57fad74762f7665669af33583a3dc9
BLAKE2b-256 de543f7d10f5030195be5fb2adc689239d2e5356e3cf6be4d2c046f1ab635589

See more details on using hashes here.

File details

Details for the file numpy-1.21.4-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

  • Download URL: numpy-1.21.4-cp310-cp310-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 27.2 MB
  • Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.7

File hashes

Hashes for numpy-1.21.4-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 8890b3360f345e8360133bc078d2dacc2843b6ee6059b568781b15b97acbe39f
MD5 95486a3ed027c926fb3fc279db6d843e
BLAKE2b-256 769aa245290ae642f78caf80d1454045d19119dd6f266a81f02a1aa7aa89ba99

See more details on using hashes here.

File details

Details for the file numpy-1.21.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numpy-1.21.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 14.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.7

File hashes

Hashes for numpy-1.21.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e3c3e990274444031482a31280bf48674441e0a5b55ddb168f3a6db3e0c38ec8
MD5 cdab6a1bf1b86021526d08a60219a6ad
BLAKE2b-256 0adaa485529a9d6ff6d86623ce0f78ef09890db628818154950005f610a16311

See more details on using hashes here.

File details

Details for the file numpy-1.21.4-cp39-cp39-win32.whl.

File metadata

  • Download URL: numpy-1.21.4-cp39-cp39-win32.whl
  • Upload date:
  • Size: 11.7 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.7

File hashes

Hashes for numpy-1.21.4-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 b1e2312f5b8843a3e4e8224b2b48fe16119617b8fc0a54df8f50098721b5bed2
MD5 404200b858b7addd03f6cdd5a484d30a
BLAKE2b-256 c28945cf1a1a4579c03a1f16d0e865b451cb24cd581fa8111ff5377488560bad

See more details on using hashes here.

File details

Details for the file numpy-1.21.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.21.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9864424631775b0c052f3bd98bc2712d131b3e2cd95d1c0c68b91709170890b0
MD5 8b8cf8c7b093419ff75ed1dd2eaa18ae
BLAKE2b-256 eade9c7f23eb0c15f8812e536fe316f704c5e4ff2d02476183d072bfb2f6db96

See more details on using hashes here.

File details

Details for the file numpy-1.21.4-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.21.4-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c74c699b122918a6c4611285cc2cad4a3aafdb135c22a16ec483340ef97d573c
MD5 9d715ba5f7596a39eb631f2dae85d203
BLAKE2b-256 7abc83ad5485e5d95efbb5aaea236d7b89f893acff1e7f1e51c0a87be50bb9e3

See more details on using hashes here.

File details

Details for the file numpy-1.21.4-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

  • Download URL: numpy-1.21.4-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
  • Upload date:
  • Size: 13.7 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.7

File hashes

Hashes for numpy-1.21.4-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 ad010846cdffe7ec27e3f933397f8a8d6c801a48634f419e3d075db27acf5880
MD5 6c103bec3085e5a6ea92cf7f6e4189ab
BLAKE2b-256 9824ad90c86de980c4393d604fa2a03de9d6e2f86263c33796a7659e7cc5bbb4

See more details on using hashes here.

File details

Details for the file numpy-1.21.4-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numpy-1.21.4-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.7

File hashes

Hashes for numpy-1.21.4-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9e6f5f50d1eff2f2f752b3089a118aee1ea0da63d56c44f3865681009b0af162
MD5 80562c39cfbdf1af9bb43b2ea5e45b6d
BLAKE2b-256 5cb601a066e5c4b51a7dd6a0a760fcabb5e2c1812a678cb3e5022536e876462a

See more details on using hashes here.

File details

Details for the file numpy-1.21.4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.21.4-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 17.0 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.7

File hashes

Hashes for numpy-1.21.4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c885bfc07f77e8fee3dc879152ba993732601f1f11de248d4f357f0ffea6a6d4
MD5 f16068540001de8a3d8f096830c97ea2
BLAKE2b-256 195a7901e94e8873d7d5800cd3ab08e19629e5ec98b0c423727cec59ac687e13

See more details on using hashes here.

File details

Details for the file numpy-1.21.4-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: numpy-1.21.4-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 27.2 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.7

File hashes

Hashes for numpy-1.21.4-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 fde96af889262e85aa033f8ee1d3241e32bf36228318a61f1ace579df4e8170d
MD5 fc02b5a068e29b2dd2de19c7ddd69926
BLAKE2b-256 c0d0c4bc6c65e2aad2904b78d4fe12772e5d89fa3f26f9d28813c72d2e878720

See more details on using hashes here.

File details

Details for the file numpy-1.21.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: numpy-1.21.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 14.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.7

File hashes

Hashes for numpy-1.21.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 170b2a0805c6891ca78c1d96ee72e4c3ed1ae0a992c75444b6ab20ff038ba2cd
MD5 2307cf9f3c02f6cdad448a681c272974
BLAKE2b-256 153d70e9393b786c2464cb3060249901ace93b154495c2f2598930d06bb187f6

See more details on using hashes here.

File details

Details for the file numpy-1.21.4-cp38-cp38-win32.whl.

File metadata

  • Download URL: numpy-1.21.4-cp38-cp38-win32.whl
  • Upload date:
  • Size: 11.7 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.7

File hashes

Hashes for numpy-1.21.4-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 bc988afcea53e6156546e5b2885b7efab089570783d9d82caf1cfd323b0bb3dd
MD5 8b5c214bc0f060dbb0287c15dde4673d
BLAKE2b-256 7daf13115250d40df44624a40ac3dc86a93d6b24481f45ff242407041a9e69a4

See more details on using hashes here.

File details

Details for the file numpy-1.21.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.21.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e4799be6a2d7d3c33699a6f77201836ac975b2e1b98c2a07f66a38f499cb50ce
MD5 b1cbca49d24c7ba43d377feb425afdce
BLAKE2b-256 b31975e179b3b5966ce259f51639b6d033d2cc95aa71f3ab03fbe67fb475dc45

See more details on using hashes here.

File details

Details for the file numpy-1.21.4-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.21.4-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4c9c23158b87ed0e70d9a50c67e5c0b3f75bcf2581a8e34668d4e9d7474d76c6
MD5 df631f776716aeb3fd705f3659599b9e
BLAKE2b-256 3666eb5884679375385e316cee793db61c557e9b1f3b99b8559c88ac14d7e561

See more details on using hashes here.

File details

Details for the file numpy-1.21.4-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

  • Download URL: numpy-1.21.4-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
  • Upload date:
  • Size: 13.7 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.7

File hashes

Hashes for numpy-1.21.4-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 34f3456f530ae8b44231c63082c8899fe9c983fd9b108c997c4b1c8c2d435333
MD5 d683b6f6af46806391579d528a040451
BLAKE2b-256 27b3c43a915cab2c2548458debe259d2ae700f1478774c32328b86aeb522682c

See more details on using hashes here.

File details

Details for the file numpy-1.21.4-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numpy-1.21.4-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 12.3 MB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.7

File hashes

Hashes for numpy-1.21.4-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1247ef28387b7bb7f21caf2dbe4767f4f4175df44d30604d42ad9bd701ebb31f
MD5 c78edc0ae8c9a5d8d0f9e3eb6dabd0b3
BLAKE2b-256 77288953fb3710f5a44e40f6c15ea7499a4af0ad314525e1679c7f01446c811c

See more details on using hashes here.

File details

Details for the file numpy-1.21.4-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.21.4-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 16.9 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.7

File hashes

Hashes for numpy-1.21.4-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2e4ed57f45f0aa38beca2a03b6532e70e548faf2debbeb3291cfc9b315d9be8f
MD5 ba94609688f575cc8dce84f1512db116
BLAKE2b-256 9795c3b2b3e5fcc641edf4711ff41797811b825899c52e673fc9364372c1d3e6

See more details on using hashes here.

File details

Details for the file numpy-1.21.4-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: numpy-1.21.4-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 27.1 MB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.7

File hashes

Hashes for numpy-1.21.4-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 c449eb870616a7b62e097982c622d2577b3dbc800aaf8689254ec6e0197cbf1e
MD5 a037bf88979ae0d4699a0cdce92bbab3
BLAKE2b-256 6c8342f77c621abdeb7c1ed5c591f2b891300e8072875f4dbec0655029ba80ce

See more details on using hashes here.

File details

Details for the file numpy-1.21.4-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.21.4-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 14.0 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.7

File hashes

Hashes for numpy-1.21.4-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 32fe5b12061f6446adcbb32cf4060a14741f9c21e15aaee59a207b6ce6423469
MD5 172301389f1532b2d9130362580e1e22
BLAKE2b-256 9ae356f6241cf309ff2f6d1df97fc0ba42a156526efa09261ee53f08521b7da3

See more details on using hashes here.

File details

Details for the file numpy-1.21.4-cp37-cp37m-win32.whl.

File metadata

  • Download URL: numpy-1.21.4-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 11.7 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.7

File hashes

Hashes for numpy-1.21.4-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 81225e58ef5fce7f1d80399575576fc5febec79a8a2742e8ef86d7b03beef49f
MD5 2ad3a06f974acd61326fd66c098df5bc
BLAKE2b-256 a24042ddc0f9156e7d9d75ef2e7c78ab6f21619ba409c7934cccc32d6c0597ba

See more details on using hashes here.

File details

Details for the file numpy-1.21.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.21.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f5162ec777ba7138906c9c274353ece5603646c6965570d82905546579573f73
MD5 9804fe2011618bf2d7b8d92f6860b2e3
BLAKE2b-256 5a2957691d477283b8683acac34ba8e9548f1f5ec936d041ab7abb6f81577d2a

See more details on using hashes here.

File details

Details for the file numpy-1.21.4-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.21.4-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5d95668e727c75b3f5088ec7700e260f90ec83f488e4c0aaccb941148b2cd377
MD5 b9208ce1695ba61ab2932c7ce7285d1d
BLAKE2b-256 5b0dde55834c5ea0dd287cb1cb156c8bc120af2863c36e4d49b4dc28f174e278

See more details on using hashes here.

File details

Details for the file numpy-1.21.4-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for numpy-1.21.4-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 92aafa03da8658609f59f18722b88f0a73a249101169e28415b4fa148caf7e41
MD5 1234643306ce481f0e5f801ddf3f1099
BLAKE2b-256 22ef89ea0b24bde9ca2098f90a31a3b0156b1bb9d258307c6c30e7191a40bfb9

See more details on using hashes here.

File details

Details for the file numpy-1.21.4-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.21.4-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 16.9 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.7

File hashes

Hashes for numpy-1.21.4-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 74b85a17528ca60cf98381a5e779fc0264b4a88b46025e6bcbe9621f46bb3e63
MD5 f0cc946d2f4ab4df7cc7e0cc8cfd429e
BLAKE2b-256 5de41178a2e82d1c9abd696496d4f0fc2d09e346b43101829e08eb3ee558fd5d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page