Skip to main content

NumPy is the fundamental package for array computing with Python.

Project description

It provides:

  • a powerful N-dimensional array object

  • sophisticated (broadcasting) functions

  • tools for integrating C/C++ and Fortran code

  • useful linear algebra, Fourier transform, and random number capabilities

  • and much more

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.

All NumPy wheels distributed on PyPI are BSD licensed.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.22.3.zip (11.5 MB view details)

Uploaded Source

Built Distributions

numpy-1.22.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

numpy-1.22.3-cp310-cp310-win_amd64.whl (14.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

numpy-1.22.3-cp310-cp310-win32.whl (12.2 MB view details)

Uploaded CPython 3.10 Windows x86

numpy-1.22.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numpy-1.22.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numpy-1.22.3-cp310-cp310-macosx_11_0_arm64.whl (12.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numpy-1.22.3-cp310-cp310-macosx_10_14_x86_64.whl (17.6 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

numpy-1.22.3-cp39-cp39-win_amd64.whl (14.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

numpy-1.22.3-cp39-cp39-win32.whl (12.2 MB view details)

Uploaded CPython 3.9 Windows x86

numpy-1.22.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

numpy-1.22.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

numpy-1.22.3-cp39-cp39-macosx_11_0_arm64.whl (12.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

numpy-1.22.3-cp39-cp39-macosx_10_14_x86_64.whl (17.6 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

numpy-1.22.3-cp38-cp38-win_amd64.whl (14.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

numpy-1.22.3-cp38-cp38-win32.whl (12.2 MB view details)

Uploaded CPython 3.8 Windows x86

numpy-1.22.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

numpy-1.22.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

numpy-1.22.3-cp38-cp38-macosx_11_0_arm64.whl (12.7 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

numpy-1.22.3-cp38-cp38-macosx_10_14_x86_64.whl (17.6 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file numpy-1.22.3.zip.

File metadata

  • Download URL: numpy-1.22.3.zip
  • Upload date:
  • Size: 11.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for numpy-1.22.3.zip
Algorithm Hash digest
SHA256 dbc7601a3b7472d559dc7b933b18b4b66f9aa7452c120e87dfb33d02008c8a18
MD5 b56530be068796a50bf5a09105c8011e
BLAKE2b-256 644ab008d1f8a7b9f5206ecf70a53f84e654707e7616a771d84c05151a4713e9

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.22.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.22.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c34ea7e9d13a70bf2ab64a2532fe149a9aced424cd05a2c4ba662fd989e3e45f
MD5 99d2dfb943327b108b2c3b923bd42000
BLAKE2b-256 d8302facfdcee2f9af55e6a7277c089736edfce1144acb3ccffaf3cff8781058

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.22.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numpy-1.22.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 14.7 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for numpy-1.22.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 08d9b008d0156c70dc392bb3ab3abb6e7a711383c3247b410b39962263576cd4
MD5 e4c512437a6d4eb4a384225861067ad8
BLAKE2b-256 5be5527451a9fb79e1cffe18ee74d79e8b8da44272a70bf924ec94143d956831

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.22.3-cp310-cp310-win32.whl.

File metadata

  • Download URL: numpy-1.22.3-cp310-cp310-win32.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for numpy-1.22.3-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 f950f8845b480cffe522913d35567e29dd381b0dc7e4ce6a4a9f9156417d2430
MD5 866eae5dba934cad50eb38c8505c8449
BLAKE2b-256 dd41a35a2239895195a88ef3a42c716128061670e8b9042f368622ffafbf38ff

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.22.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.22.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a3bae1a2ed00e90b3ba5f7bd0a7c7999b55d609e0c54ceb2b076a25e345fa9f4
MD5 319f97f5ee26b9c3c06f7a2a3df412a3
BLAKE2b-256 15874d6bc4e2053a4b517b022746f8e2dae328155a4c723bcad4c7d536febf51

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.22.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.22.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 48a3aecd3b997bf452a2dedb11f4e79bc5bfd21a1d4cc760e703c31d57c84b3e
MD5 d925fff720561673fd7ee8ead0e94935
BLAKE2b-256 dcb6b8864042996dab931a9598e0aa9b55748aa6be80e743e4a2a6e5631f9bee

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.22.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numpy-1.22.3-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 12.8 MB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for numpy-1.22.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8251ed96f38b47b4295b1ae51631de7ffa8260b5b087808ef09a39a9d66c97ab
MD5 c673faa3ac8745ad10ed0428a21a77aa
BLAKE2b-256 36b1b535a1d417c02d503d344115b5116a1b6156867e3d604af852e845ddd27c

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.22.3-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: numpy-1.22.3-cp310-cp310-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 17.6 MB
  • Tags: CPython 3.10, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for numpy-1.22.3-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 92bfa69cfbdf7dfc3040978ad09a48091143cffb778ec3b03fa170c494118d75
MD5 14f1872bbab050b0579e5fcd8b341b81
BLAKE2b-256 6b374a4898d9acd56087f9b4139b750f68df40355b7410dde4ce5ff8cbf54350

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.22.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numpy-1.22.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 14.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for numpy-1.22.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 639b54cdf6aa4f82fe37ebf70401bbb74b8508fddcf4797f9fe59615b8c5813a
MD5 644e0b141fa36a1baf0338032254cc9a
BLAKE2b-256 d80c429d18873843ac368fae6647fca04bf76cc4683560338c76260d8964a00d

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.22.3-cp39-cp39-win32.whl.

File metadata

  • Download URL: numpy-1.22.3-cp39-cp39-win32.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for numpy-1.22.3-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 fdf3c08bce27132395d3c3ba1503cac12e17282358cb4bddc25cc46b0aca07aa
MD5 b38604778ffd0a17931c06738c3ce9ed
BLAKE2b-256 a1097db2b7a0a0e30366515ec863b9c06725b5a9442316e005d61ac0b09dbfbd

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.22.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.22.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 97098b95aa4e418529099c26558eeb8486e66bd1e53a6b606d684d0c3616b168
MD5 f92412e4273c2580abcc1b75c56e9651
BLAKE2b-256 252f811ad95effd790cd13cdea494e1cd7520ebc3bf049c3e88c3ca4ba8175c5

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.22.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.22.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5bfb1bb598e8229c2d5d48db1860bcf4311337864ea3efdbe1171fb0c5da515d
MD5 3641825aca07cb26732425e52d034daf
BLAKE2b-256 d91c1999e8cf1cb92e5640caeb79bea7064c14e6d8d54b2a8e053c068266b1b8

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.22.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numpy-1.22.3-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 12.8 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for numpy-1.22.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fade0d4f4d292b6f39951b6836d7a3c7ef5b2347f3c420cd9820a1d90d794802
MD5 ba122eaa0988801e250f8674e3dd612e
BLAKE2b-256 226695849d4d0116eef22d42355f1e8b67b43b0799093914fce369551bcc9d2f

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.22.3-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: numpy-1.22.3-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 17.6 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for numpy-1.22.3-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 2c10a93606e0b4b95c9b04b77dc349b398fdfbda382d2a39ba5a822f669a0123
MD5 b8694b880a1a68d1716f60a9c9e82b38
BLAKE2b-256 58556fef1ef16124066b96d5b5cb107c8e0af20b2007b79ba8f7e52ca2e1b2b7

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.22.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: numpy-1.22.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 14.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for numpy-1.22.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 07a8c89a04997625236c5ecb7afe35a02af3896c8aa01890a849913a2309c676
MD5 001244a6bafa640d7509c85661a4e98e
BLAKE2b-256 faf2f4ec28f935f980167740c5af5a1908090a48a564bed5e689f4b92386d7d9

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.22.3-cp38-cp38-win32.whl.

File metadata

  • Download URL: numpy-1.22.3-cp38-cp38-win32.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for numpy-1.22.3-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 e7927a589df200c5e23c57970bafbd0cd322459aa7b1ff73b7c2e84d6e3eae62
MD5 1273fb3c77383ab28f2fb05192751340
BLAKE2b-256 2f0d5a0a0bb939f4cc6db6fe777a7221c7c33bf5f5a601f5abfc82692bb4b6aa

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.22.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.22.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3ca688e1b9b95d80250bca34b11a05e389b1420d00e87a0d12dc45f131f704a1
MD5 4fe6e71e7871cb31ffc4122aa5707be7
BLAKE2b-256 38c0c45c5eb0e25247d5fbb333fd0b56e570ba21cf0e3dca3abad174fb780e8c

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.22.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.22.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 568dfd16224abddafb1cbcce2ff14f522abe037268514dd7e42c6776a1c3f8e5
MD5 e8a01c2ca1474aff142366a0a2fe0812
BLAKE2b-256 e1f05c3cf38272793a610cc843052e58c93b40b424e2c4a933422cd0bd6391ba

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.22.3-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numpy-1.22.3-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 12.7 MB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for numpy-1.22.3-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f8c1f39caad2c896bc0018f699882b345b2a63708008be29b1f355ebf6f933fe
MD5 d22dc074bde64f6e91a2d1990345f821
BLAKE2b-256 5c51872b5c1f40c740e9ebdad87dca8bd42fc7cb5aafab14b96d3a83fca52fd3

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.22.3-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: numpy-1.22.3-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 17.6 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for numpy-1.22.3-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 201b4d0552831f7250a08d3b38de0d989d6f6e4658b709a02a73c524ccc6ffce
MD5 a28052af37037f0d5c3b47f4a7040135
BLAKE2b-256 52d0d7a200f2c3d6c6a879dbdc6d762c7dbed542527333ac9a6a72c8ffab9814

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page