Skip to main content

NumPy is the fundamental package for array computing with Python.

Project description

It provides:

  • a powerful N-dimensional array object

  • sophisticated (broadcasting) functions

  • tools for integrating C/C++ and Fortran code

  • useful linear algebra, Fourier transform, and random number capabilities

  • and much more

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.

All NumPy wheels distributed on PyPI are BSD licensed.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.22.4.zip (11.5 MB view details)

Uploaded Source

Built Distributions

numpy-1.22.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

numpy-1.22.4-cp310-cp310-win_amd64.whl (14.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

numpy-1.22.4-cp310-cp310-win32.whl (12.2 MB view details)

Uploaded CPython 3.10 Windows x86

numpy-1.22.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numpy-1.22.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numpy-1.22.4-cp310-cp310-macosx_11_0_arm64.whl (12.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numpy-1.22.4-cp310-cp310-macosx_10_15_x86_64.whl (17.7 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

numpy-1.22.4-cp310-cp310-macosx_10_14_x86_64.whl (17.6 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

numpy-1.22.4-cp39-cp39-win_amd64.whl (14.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

numpy-1.22.4-cp39-cp39-win32.whl (12.2 MB view details)

Uploaded CPython 3.9 Windows x86

numpy-1.22.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

numpy-1.22.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

numpy-1.22.4-cp39-cp39-macosx_11_0_arm64.whl (12.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

numpy-1.22.4-cp39-cp39-macosx_10_15_x86_64.whl (17.7 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

numpy-1.22.4-cp39-cp39-macosx_10_14_x86_64.whl (17.7 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

numpy-1.22.4-cp38-cp38-win_amd64.whl (14.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

numpy-1.22.4-cp38-cp38-win32.whl (12.3 MB view details)

Uploaded CPython 3.8 Windows x86

numpy-1.22.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

numpy-1.22.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

numpy-1.22.4-cp38-cp38-macosx_11_0_arm64.whl (12.7 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

numpy-1.22.4-cp38-cp38-macosx_10_15_x86_64.whl (17.6 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

File details

Details for the file numpy-1.22.4.zip.

File metadata

  • Download URL: numpy-1.22.4.zip
  • Upload date:
  • Size: 11.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.4

File hashes

Hashes for numpy-1.22.4.zip
Algorithm Hash digest
SHA256 425b390e4619f58d8526b3dcf656dde069133ae5c240229821f01b5f44ea07af
MD5 b44849506fbb54cdef9dbb435b2b1987
BLAKE2b-256 f6d8ab692a75f584d13c6542c3994f75def5bce52ded9399f52e230fe402819d

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.22.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.22.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0791fbd1e43bf74b3502133207e378901272f3c156c4df4954cad833b1380207
MD5 ab803b24ea557452e828adba1b986af3
BLAKE2b-256 d4734958000e11d41224096516ad77a78b044dff7a97eb247e16444c580c0f20

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.22.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numpy-1.22.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 14.7 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.4

File hashes

Hashes for numpy-1.22.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 3e1ffa4748168e1cc8d3cde93f006fe92b5421396221a02f2274aab6ac83b077
MD5 79dfdc29a4730e44d6df33dbea5b35b0
BLAKE2b-256 b550d7978137464251c393df28fe0592fbb968110f752d66f60c7a53f7158076

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.22.4-cp310-cp310-win32.whl.

File metadata

  • Download URL: numpy-1.22.4-cp310-cp310-win32.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.4

File hashes

Hashes for numpy-1.22.4-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 9ce7df0abeabe7fbd8ccbf343dc0db72f68549856b863ae3dd580255d009648e
MD5 50becf2e048e54dc5227dfe8378aae1e
BLAKE2b-256 2afaf00ba4919bc06073af4c674b1ddc0c93d339abb2b2ec935136db8c55f87d

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.22.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.22.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a911e317e8c826ea632205e63ed8507e0dc877dcdc49744584dfc363df9ca08c
MD5 757d68b0cdb4e28ffce8574b6a2f3c5e
BLAKE2b-256 b0f4d67c8c39efe3c45dfd32bb2a3fc49cbbe5496e575cc42b8bac60fe7b6701

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.22.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.22.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 43a8ca7391b626b4c4fe20aefe79fec683279e31e7c79716863b4b25021e0e74
MD5 f99778023770c12f896768c90f7712e5
BLAKE2b-256 91187949972b5254f88f040f53dc6f019fcb21597d6f37f7446d71019acece03

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.22.4-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numpy-1.22.4-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 12.8 MB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.4

File hashes

Hashes for numpy-1.22.4-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7228ad13744f63575b3a972d7ee4fd61815b2879998e70930d4ccf9ec721dce0
MD5 63c74e5395a2b31d8adc5b1aa0c62471
BLAKE2b-256 9b1214529e4a0749c165c2f9df5cb09873f35ffe1bac7cfdf9a26fe90bfd587a

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.22.4-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: numpy-1.22.4-cp310-cp310-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 17.7 MB
  • Tags: CPython 3.10, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.4

File hashes

Hashes for numpy-1.22.4-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 1ce7ab2053e36c0a71e7a13a7475bd3b1f54750b4b433adc96313e127b870887
MD5 0730f9e196f70ad89f246bf95ccf05d5
BLAKE2b-256 956a319e9fafb828e4a651b03b9622b781dfd80b5f1f5f31cfa6c9b734ce7cda

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.22.4-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: numpy-1.22.4-cp310-cp310-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 17.6 MB
  • Tags: CPython 3.10, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.4

File hashes

Hashes for numpy-1.22.4-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ba9ead61dfb5d971d77b6c131a9dbee62294a932bf6a356e48c75ae684e635b3
MD5 a19351fd3dc0b3bbc733495ed18b8f24
BLAKE2b-256 d04a5677dc12d2b0c2f9fa901cc43b3f6b8d99ddac00fcfca93e9989bca1d93c

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.22.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numpy-1.22.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 14.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.4

File hashes

Hashes for numpy-1.22.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f0725df166cf4785c0bc4cbfb320203182b1ecd30fee6e541c8752a92df6aa32
MD5 711b23acce54a18ce74fc80f48f48062
BLAKE2b-256 992ede8dcdbe1579b96f202685d8811d864291c374ea5fce13c63c70fdaf905d

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.22.4-cp39-cp39-win32.whl.

File metadata

  • Download URL: numpy-1.22.4-cp39-cp39-win32.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.4

File hashes

Hashes for numpy-1.22.4-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 cc7f00008eb7d3f2489fca6f334ec19ca63e31371be28fd5dad955b16ec285bd
MD5 9562153d4a83d773c20eb626cbd65cde
BLAKE2b-256 f2d71003dd479f3396bcbe508fdc565918380e27bf619a2b1dd8947f46a0d555

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.22.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.22.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 37431a77ceb9307c28382c9773da9f306435135fae6b80b62a11c53cfedd8802
MD5 90fc45eaf8b8c4fac3f3ebd105a5a856
BLAKE2b-256 32820a28e3a04411a1a4c1d099bb94349f97050579f90a0290432f09d9a58148

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.22.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.22.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f3eb268dbd5cfaffd9448113539e44e2dd1c5ca9ce25576f7c04a5453edc26fa
MD5 9b7c5b39d5611d92b66eb545d44b25db
BLAKE2b-256 78d35131cface1344cdc63c21e19837008f5df8f5cfcc126a4cdcb62ab28775b

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.22.4-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numpy-1.22.4-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 12.8 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.4

File hashes

Hashes for numpy-1.22.4-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2d487e06ecbf1dc2f18e7efce82ded4f705f4bd0cd02677ffccfb39e5c284c7e
MD5 dda3815df12b8a99c6c3069f69997521
BLAKE2b-256 a7324c9cdeb7ff318ee2eae497afb12070c6c62876e4505bb2ea1011efc672bb

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.22.4-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: numpy-1.22.4-cp39-cp39-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 17.7 MB
  • Tags: CPython 3.9, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.4

File hashes

Hashes for numpy-1.22.4-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 b89bf9b94b3d624e7bb480344e91f68c1c6c75f026ed6755955117de00917a7c
MD5 c99fa7e04cb7cc23f1713f2023b4e489
BLAKE2b-256 494aa0d5e8b6c4c81dff3afe4d13e36c7863ba1a9118a1ad170e4123fbaad8b4

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.22.4-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: numpy-1.22.4-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 17.7 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.4

File hashes

Hashes for numpy-1.22.4-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 4c6036521f11a731ce0648f10c18ae66d7143865f19f7299943c985cdc95afb5
MD5 4d9b97d74799e5fc48860f0b4a3b255a
BLAKE2b-256 048f03589323b01a0f99fe083a198f54d79ab9f66183c1d30c6bf92f4d162dc8

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.22.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: numpy-1.22.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 14.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.4

File hashes

Hashes for numpy-1.22.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e96d7f3096a36c8754207ab89d4b3282ba7b49ea140e4973591852c77d09eb76
MD5 c9a731d08081396b7a1b66977734d2ac
BLAKE2b-256 173d81208f0cf5f2885d00294589fe9adc6ecc985f898f1007781e66cb85230a

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.22.4-cp38-cp38-win32.whl.

File metadata

  • Download URL: numpy-1.22.4-cp38-cp38-win32.whl
  • Upload date:
  • Size: 12.3 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.4

File hashes

Hashes for numpy-1.22.4-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 fb7a980c81dd932381f8228a426df8aeb70d59bbcda2af075b627bbc50207cba
MD5 ae0405894c065349a511e4575b919e2a
BLAKE2b-256 04a194bae0e1b2c0875fe4662863c41c260549f9a3d22f0f45a609f3872275d2

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.22.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.22.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 64f56fc53a2d18b1924abd15745e30d82a5782b2cab3429aceecc6875bd5add0
MD5 86d959605c66ccba11c6504f25fff0d7
BLAKE2b-256 2f14abc14a3f3663739e5d3c8fd980201d10788d75fea5b0685734227052c4f0

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.22.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.22.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d4c5d5eb2ec8da0b4f50c9a843393971f31f1d60be87e0fb0917a49133d257d6
MD5 6bc066d3f61da3304c82d92f3f900a4f
BLAKE2b-256 b977af8edf06df780616bc9f7631eb743e3c6a22f7a0e3cecb072862b71d534f

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.22.4-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numpy-1.22.4-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 12.7 MB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.4

File hashes

Hashes for numpy-1.22.4-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c1d937820db6e43bec43e8d016b9b3165dcb42892ea9f106c70fb13d430ffe72
MD5 41a7c6240081010824cc0d5c02900fe6
BLAKE2b-256 25d5b6622b3822e4f40c4a431271f8d65deca6f200bda337810edf7fbff8a69a

See more details on using hashes here.

Provenance

File details

Details for the file numpy-1.22.4-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: numpy-1.22.4-cp38-cp38-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 17.6 MB
  • Tags: CPython 3.8, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.4

File hashes

Hashes for numpy-1.22.4-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 59d55e634968b8f77d3fd674a3cf0b96e85147cd6556ec64ade018f27e9479e1
MD5 8fd8f04d71ead55c2773d1b46668ca67
BLAKE2b-256 4be7bb0fefe2d51d16149196ffbbcb51e615ff577340d9eb67c7ff8a0503040c

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page