Skip to main content

NumPy is the fundamental package for array computing with Python.

Project description

It provides:

  • a powerful N-dimensional array object

  • sophisticated (broadcasting) functions

  • tools for integrating C/C++ and Fortran code

  • useful linear algebra, Fourier transform, and random number capabilities

  • and much more

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.

All NumPy wheels distributed on PyPI are BSD licensed.

NumPy requires pytest and hypothesis. Tests can then be run after installation with:

python -c 'import numpy; numpy.test()'

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.23.0.tar.gz (10.7 MB view details)

Uploaded Source

Built Distributions

numpy-1.23.0-pp38-pypy38_pp73-win_amd64.whl (14.5 MB view details)

Uploaded PyPy Windows x86-64

numpy-1.23.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

numpy-1.23.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (17.5 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

numpy-1.23.0-cp310-cp310-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

numpy-1.23.0-cp310-cp310-win32.whl (12.2 MB view details)

Uploaded CPython 3.10 Windows x86

numpy-1.23.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numpy-1.23.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numpy-1.23.0-cp310-cp310-macosx_11_0_arm64.whl (13.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numpy-1.23.0-cp310-cp310-macosx_10_9_x86_64.whl (18.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

numpy-1.23.0-cp39-cp39-win_amd64.whl (14.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

numpy-1.23.0-cp39-cp39-win32.whl (12.2 MB view details)

Uploaded CPython 3.9 Windows x86

numpy-1.23.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

numpy-1.23.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

numpy-1.23.0-cp39-cp39-macosx_11_0_arm64.whl (13.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

numpy-1.23.0-cp39-cp39-macosx_10_9_x86_64.whl (18.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

numpy-1.23.0-cp38-cp38-win_amd64.whl (14.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

numpy-1.23.0-cp38-cp38-win32.whl (12.2 MB view details)

Uploaded CPython 3.8 Windows x86

numpy-1.23.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

numpy-1.23.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

numpy-1.23.0-cp38-cp38-macosx_11_0_arm64.whl (13.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

numpy-1.23.0-cp38-cp38-macosx_10_9_x86_64.whl (18.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file numpy-1.23.0.tar.gz.

File metadata

  • Download URL: numpy-1.23.0.tar.gz
  • Upload date:
  • Size: 10.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.0.tar.gz
Algorithm Hash digest
SHA256 bd3fa4fe2e38533d5336e1272fc4e765cabbbde144309ccee8675509d5cd7b05
MD5 513e4241d06b8fae5732cd049cdf3b57
BLAKE2b-256 03c614a17e10813b8db20d1e800ff9a3a898e65d25f2b0e9d6a94616f1e3362c

See more details on using hashes here.

File details

Details for the file numpy-1.23.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

  • Download URL: numpy-1.23.0-pp38-pypy38_pp73-win_amd64.whl
  • Upload date:
  • Size: 14.5 MB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 94b170b4fa0168cd6be4becf37cb5b127bd12a795123984385b8cd4aca9857e5
MD5 4f8142288202a32c682d01921d6c2c78
BLAKE2b-256 0bbd254a5f5be3105b6ee6fb0af2eccf700125a0701d15c3e6681c7ab712cb08

See more details on using hashes here.

File details

Details for the file numpy-1.23.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.23.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d0d2094e8f4d760500394d77b383a1b06d3663e8892cdf5df3c592f55f3bff66
MD5 fef1d20265135737fbc0f91ca4441990
BLAKE2b-256 03039d2695dbcd168fec1e6033950f5be3fa2770d20db0cda2b36a925ecbbe09

See more details on using hashes here.

File details

Details for the file numpy-1.23.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.23.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 17.5 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f9c3fc2adf67762c9fe1849c859942d23f8d3e0bee7b5ed3d4a9c3eeb50a2f07
MD5 e1462428487dc599cdffb723dec642c4
BLAKE2b-256 cd372f84785e78b6a14e54a6cd78f6f12161835fb4868bcf1b6d36ebded68bad

See more details on using hashes here.

File details

Details for the file numpy-1.23.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numpy-1.23.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 14.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 97a76604d9b0e79f59baeca16593c711fddb44936e40310f78bfef79ee9a835f
MD5 877322db5a62634eef4e351db99a070d
BLAKE2b-256 341c1c9ec57f522822e7507fb5cf69b153f857405518d8f50fa4ff94f43385be

See more details on using hashes here.

File details

Details for the file numpy-1.23.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: numpy-1.23.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 2b2da66582f3a69c8ce25ed7921dcd8010d05e59ac8d89d126a299be60421171
MD5 b8f06ce4054acc147845a9643bd36082
BLAKE2b-256 0afb03f410814f9321761f25faa257554671ff77c1a746e4641002ad90972773

See more details on using hashes here.

File details

Details for the file numpy-1.23.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.23.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d54b3b828d618a19779a84c3ad952e96e2c2311b16384e973e671aa5be1f6187
MD5 03c3df83b8327910482a7d24ebe9213b
BLAKE2b-256 7a888404fbe4f6472e4e54106a8faacae1279a244422bc88f5ee3e33ba2dd72b

See more details on using hashes here.

File details

Details for the file numpy-1.23.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.23.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f1d88ef79e0a7fa631bb2c3dda1ea46b32b1fe614e10fedd611d3d5398447f2f
MD5 219017660861fdec59b852630e3fef2a
BLAKE2b-256 85f906e90e66b9c4148ef044329da0a1c8e4f76bbf8f618a8367470f531b6433

See more details on using hashes here.

File details

Details for the file numpy-1.23.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numpy-1.23.0-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 13.3 MB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 196cd074c3f97c4121601790955f915187736f9cf458d3ee1f1b46aff2b1ade0
MD5 e657684ea521c50de0197aabfb44e78d
BLAKE2b-256 e6aa323e1cf4f25025c6f67dcf179db754142f92847c9d592599dc01b78de460

See more details on using hashes here.

File details

Details for the file numpy-1.23.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.23.0-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.1 MB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 58bfd40eb478f54ff7a5710dd61c8097e169bc36cc68333d00a9bcd8def53b38
MD5 21839aaeab3088e685d7c8d0e1856a23
BLAKE2b-256 8665fe6f20a40d05fc909cab9c3c17f259b03a1fbf87a6b3a7b92ca0376582e8

See more details on using hashes here.

File details

Details for the file numpy-1.23.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numpy-1.23.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 14.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 fc431493df245f3c627c0c05c2bd134535e7929dbe2e602b80e42bf52ff760bc
MD5 ff126a84dcf91700f9ca13ff606d109f
BLAKE2b-256 aab2a122ec818608b6020a8cdd7a9cc40896c5747aba8a6b4d36625e7927a540

See more details on using hashes here.

File details

Details for the file numpy-1.23.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: numpy-1.23.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 d6ca8dabe696c2785d0c8c9b0d8a9b6e5fdbe4f922bde70d57fa1a2848134f95
MD5 49185f219512403ef23d43d6f2adbefd
BLAKE2b-256 b1db9125172436997928dd9987c1bf552513dc055bf4e302c747d9ae5ad473be

See more details on using hashes here.

File details

Details for the file numpy-1.23.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.23.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 092f5e6025813e64ad6d1b52b519165d08c730d099c114a9247c9bb635a2a450
MD5 6ff50a994f6006349b5f1415e4da6f45
BLAKE2b-256 da0e496e529f440f528273f6847e14d7b132b0556a824fc2af36e8afd8e6a020

See more details on using hashes here.

File details

Details for the file numpy-1.23.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.23.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 79a506cacf2be3a74ead5467aee97b81fca00c9c4c8b3ba16dbab488cd99ba10
MD5 06d5cd49de096482944dead2eb92d783
BLAKE2b-256 532eacd76ea66fd4b5e02dd572101c2628a134f3fdedcaef10175dab2d5398aa

See more details on using hashes here.

File details

Details for the file numpy-1.23.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numpy-1.23.0-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 13.3 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 98e8e0d8d69ff4d3fa63e6c61e8cfe2d03c29b16b58dbef1f9baa175bbed7860
MD5 ba5729353c3521ed7ee72c796e77a546
BLAKE2b-256 8ba56b5a75f87cb330460398e8c7be7399d9f1c75c9b1a73888d4952a50184b0

See more details on using hashes here.

File details

Details for the file numpy-1.23.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.23.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.1 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1c29b44905af288b3919803aceb6ec7fec77406d8b08aaa2e8b9e63d0fe2f160
MD5 dc2a5c5d2223f7b45a45f7f760d0f2db
BLAKE2b-256 afe3e2cbfbf5b36706416aea1f17ec4ef454360e8e0177782dda43befcb43177

See more details on using hashes here.

File details

Details for the file numpy-1.23.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: numpy-1.23.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 14.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5043bcd71fcc458dfb8a0fc5509bbc979da0131b9d08e3d5f50fb0bbb36f169a
MD5 60c7d27cf92dadb6d206df6e65b1032f
BLAKE2b-256 14eedd565fd9cfcb08c50dd406d463afcb74f95cde1e1f5477cc2edcf28a3683

See more details on using hashes here.

File details

Details for the file numpy-1.23.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: numpy-1.23.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 fe8b9683eb26d2c4d5db32cd29b38fdcf8381324ab48313b5b69088e0e355379
MD5 449bfa2d55aff3e722d2fc85a7549620
BLAKE2b-256 b083d0e88feb2af9b66f11aac16b2ca2cc5e7450e297c1b922d32bf5beabe088

See more details on using hashes here.

File details

Details for the file numpy-1.23.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.23.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ae8adff4172692ce56233db04b7ce5792186f179c415c37d539c25de7298d25d
MD5 771a1f7e488327645bac5b54dd2f6286
BLAKE2b-256 936dd63d5fb9077d3b29ae2792624b3705b8689023cae0f89f9bf72146c34b59

See more details on using hashes here.

File details

Details for the file numpy-1.23.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.23.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ac86f407873b952679f5f9e6c0612687e51547af0e14ddea1eedfcb22466babd
MD5 22d43465791814fe50e03ded430bd80c
BLAKE2b-256 616441216b0c4aba7e41aff0e8cdfd91bcd4b08e1089d347d90f5ba7bc191ba2

See more details on using hashes here.

File details

Details for the file numpy-1.23.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numpy-1.23.0-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 13.3 MB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f0f18804df7370571fb65db9b98bf1378172bd4e962482b857e612d1fec0f53e
MD5 5514a0030e5cf065e916950737d6d129
BLAKE2b-256 82f68d883503328426abf4292b102cf4fe0c86abcde99cf3aeea4f7c0ed1765b

See more details on using hashes here.

File details

Details for the file numpy-1.23.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.23.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.1 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d8cc87bed09de55477dba9da370c1679bd534df9baa171dd01accbb09687dac3
MD5 7bb54f95e74306eff733466b6343695f
BLAKE2b-256 1a8911ffd13e174d5cdfa55065dd51620a11c3c63275ef855bb1f8c36c01e1e9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page