Skip to main content

NumPy is the fundamental package for array computing with Python.

Project description

It provides:

  • a powerful N-dimensional array object

  • sophisticated (broadcasting) functions

  • tools for integrating C/C++ and Fortran code

  • useful linear algebra, Fourier transform, and random number capabilities

  • and much more

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.

All NumPy wheels distributed on PyPI are BSD licensed.

NumPy requires pytest and hypothesis. Tests can then be run after installation with:

python -c 'import numpy; numpy.test()'

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.23.1.tar.gz (10.7 MB view details)

Uploaded Source

Built Distributions

numpy-1.23.1-pp38-pypy38_pp73-win_amd64.whl (14.5 MB view details)

Uploaded PyPy Windows x86-64

numpy-1.23.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

numpy-1.23.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (17.5 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

numpy-1.23.1-cp310-cp310-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

numpy-1.23.1-cp310-cp310-win32.whl (12.2 MB view details)

Uploaded CPython 3.10 Windows x86

numpy-1.23.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numpy-1.23.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numpy-1.23.1-cp310-cp310-macosx_11_0_arm64.whl (13.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numpy-1.23.1-cp310-cp310-macosx_10_9_x86_64.whl (18.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

numpy-1.23.1-cp39-cp39-win_amd64.whl (14.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

numpy-1.23.1-cp39-cp39-win32.whl (12.2 MB view details)

Uploaded CPython 3.9 Windows x86

numpy-1.23.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

numpy-1.23.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

numpy-1.23.1-cp39-cp39-macosx_11_0_arm64.whl (13.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

numpy-1.23.1-cp39-cp39-macosx_10_9_x86_64.whl (18.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

numpy-1.23.1-cp38-cp38-win_amd64.whl (14.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

numpy-1.23.1-cp38-cp38-win32.whl (12.2 MB view details)

Uploaded CPython 3.8 Windows x86

numpy-1.23.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

numpy-1.23.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

numpy-1.23.1-cp38-cp38-macosx_11_0_arm64.whl (13.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

numpy-1.23.1-cp38-cp38-macosx_10_9_x86_64.whl (18.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file numpy-1.23.1.tar.gz.

File metadata

  • Download URL: numpy-1.23.1.tar.gz
  • Upload date:
  • Size: 10.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.1.tar.gz
Algorithm Hash digest
SHA256 d748ef349bfef2e1194b59da37ed5a29c19ea8d7e6342019921ba2ba4fd8b624
MD5 4f8636a9c1a77ca0fb923ba55378891f
BLAKE2b-256 13b10c22aa7ca1deda4915cdec9562f839546bb252eecf6ad596eaec0592bd35

See more details on using hashes here.

File details

Details for the file numpy-1.23.1-pp38-pypy38_pp73-win_amd64.whl.

File metadata

  • Download URL: numpy-1.23.1-pp38-pypy38_pp73-win_amd64.whl
  • Upload date:
  • Size: 14.5 MB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.1-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 55df0f7483b822855af67e38fb3a526e787adf189383b4934305565d71c4b148
MD5 44ce1e07927cc09415df9898857792da
BLAKE2b-256 484ecf5f1629b30476e25b22abbecc6c4b0d3959d14db0ee18683164113e8989

See more details on using hashes here.

File details

Details for the file numpy-1.23.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.23.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5d732d17b8a9061540a10fda5bfeabca5785700ab5469a5e9b93aca5e2d3a5fb
MD5 40d5b2ff869707b0d97325ce44631135
BLAKE2b-256 4330e75dd35e2679ce92b0f6a1d865f75784789764c47910d4c6b537d66327ba

See more details on using hashes here.

File details

Details for the file numpy-1.23.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.23.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 17.5 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8002574a6b46ac3b5739a003b5233376aeac5163e5dcd43dd7ad062f3e186129
MD5 5c7b2d1471b1b9ec6ff1cb3fe1f8ac14
BLAKE2b-256 5626053e57520b5c8746ad7227c217b7f6967a90fcb6640eab691d5ec285c9a9

See more details on using hashes here.

File details

Details for the file numpy-1.23.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numpy-1.23.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 14.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 1865fdf51446839ca3fffaab172461f2b781163f6f395f1aed256b1ddc253622
MD5 a0e02823883bdfcec49309e108f65e13
BLAKE2b-256 8b1175a93826457f94a4c857a38ea3f178915f27ff38ffee1753e36994be7810

See more details on using hashes here.

File details

Details for the file numpy-1.23.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: numpy-1.23.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 3ab67966c8d45d55a2bdf40701536af6443763907086c0a6d1232688e27e5447
MD5 a9afb7c34b48d08fc50427ae6516b42d
BLAKE2b-256 b94bb805d1afe9de9d31444ff79300042d52aeeb3efa9fff7fffc299bd349469

See more details on using hashes here.

File details

Details for the file numpy-1.23.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.23.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3119daed207e9410eaf57dcf9591fdc68045f60483d94956bee0bfdcba790953
MD5 9d3e9f7f9b3dce6cf15209e4f25f346e
BLAKE2b-256 88cc92815174c345015a326e3fff8beddcb951b3ef0f7c8296fcc22c622add7c

See more details on using hashes here.

File details

Details for the file numpy-1.23.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.23.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e0d7447679ae9a7124385ccf0ea990bb85bb869cef217e2ea6c844b6a6855073
MD5 1c1d68b3483eaf99b9a3583c8ac8bf47
BLAKE2b-256 f3a87122ace9f2c373194ab2c9e227d626c90a4331e31352528976c976563a0c

See more details on using hashes here.

File details

Details for the file numpy-1.23.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numpy-1.23.1-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 13.3 MB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9ce242162015b7e88092dccd0e854548c0926b75c7924a3495e02c6067aba1f5
MD5 42a89a88ef26b768e8933ce46b1cc2bd
BLAKE2b-256 8ce2be5ea562620811ba9277da559d9662d02d22c63d4228cdf01d65f0342c5f

See more details on using hashes here.

File details

Details for the file numpy-1.23.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.23.1-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.1 MB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b15c3f1ed08df4980e02cc79ee058b788a3d0bef2fb3c9ca90bb8cbd5b8a3a04
MD5 79f0d8c114f282b834b49209d6955f98
BLAKE2b-256 c0c28d58f3ccd1aa3b1eaa5c333a6748e225b45cf8748b13f052cbb3c811c996

See more details on using hashes here.

File details

Details for the file numpy-1.23.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numpy-1.23.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 14.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 37ece2bd095e9781a7156852e43d18044fd0d742934833335599c583618181b9
MD5 787486e3cd87b98024ffe1c969c4db7a
BLAKE2b-256 bddd0610fb49c433fe5987ae312fe672119080fd77be484b5698d6fa7554148b

See more details on using hashes here.

File details

Details for the file numpy-1.23.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: numpy-1.23.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 c2f91f88230042a130ceb1b496932aa717dcbd665350beb821534c5c7e15881c
MD5 4255577f857e838f7a94e3a614ddc5eb
BLAKE2b-256 402dfcb9e41c553adb1a214eca5e2bfc7f87e5a752c7add86da19ddc1cf434b5

See more details on using hashes here.

File details

Details for the file numpy-1.23.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.23.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a35c4e64dfca659fe4d0f1421fc0f05b8ed1ca8c46fb73d9e5a7f175f85696bb
MD5 d9810bb71a0ef9837e87ea5c44fcab5e
BLAKE2b-256 8dd6cc2330e512936a904a4db1629b71d697fb309115f6d2ede94d183cdfe185

See more details on using hashes here.

File details

Details for the file numpy-1.23.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.23.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 35590b9c33c0f1c9732b3231bb6a72d1e4f77872390c47d50a615686ae7ed3fd
MD5 05b0b37c92f7a7e7c01afac0a5322b40
BLAKE2b-256 93769e53d1e5b94e67df8fc86554cac49fd9ead0bf163383776c153c34670a19

See more details on using hashes here.

File details

Details for the file numpy-1.23.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numpy-1.23.1-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 13.3 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 876f60de09734fbcb4e27a97c9a286b51284df1326b1ac5f1bf0ad3678236b22
MD5 c9152c62b2f31e742e24bfdc97b28666
BLAKE2b-256 527c716ab0f3b92b44a3e55d2e51cf66a8a8d403548d2ca82961129fa2c775fe

See more details on using hashes here.

File details

Details for the file numpy-1.23.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.23.1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.1 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 173f28921b15d341afadf6c3898a34f20a0569e4ad5435297ba262ee8941e77b
MD5 e1ca14acd7d83bc74bdf6ab0bb4bd195
BLAKE2b-256 e543b1b80cbcea9f2d0e6adadd27a8da2c71b751d5670a846b444087fab408a1

See more details on using hashes here.

File details

Details for the file numpy-1.23.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: numpy-1.23.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 14.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 37e5ebebb0eb54c5b4a9b04e6f3018e16b8ef257d26c8945925ba8105008e645
MD5 02d0734ae8ad5e18a40c6c6de18486a0
BLAKE2b-256 d0196e81ed6fe30271ebcf25e5e2a0bdf1fa06ddee03a8cb82625503826970db

See more details on using hashes here.

File details

Details for the file numpy-1.23.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: numpy-1.23.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 47f10ab202fe4d8495ff484b5561c65dd59177949ca07975663f4494f7269e3e
MD5 d07bee0ea3142a96cb5e4e16aca273ca
BLAKE2b-256 61e6cba9f64659405fd2236926d934d5f9a83f0e654b3838c5bcd3f400547e2c

See more details on using hashes here.

File details

Details for the file numpy-1.23.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.23.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1408c3527a74a0209c781ac82bde2182b0f0bf54dea6e6a363fe0cc4488a7ce7
MD5 aa6f0f192312c79cd770c2c395e9982a
BLAKE2b-256 86c99f9d6812fa8a031a568c2c1c49f207a0a4030ead438644c887410fc49c8a

See more details on using hashes here.

File details

Details for the file numpy-1.23.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.23.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 68b69f52e6545af010b76516f5daaef6173e73353e3295c5cb9f96c35d755641
MD5 1cf199b3a93960c4f269853a56a8d8eb
BLAKE2b-256 2c38fe2d87da2116eb48e54c8e2e3f168f38bb0c4b71462443588453173cbddd

See more details on using hashes here.

File details

Details for the file numpy-1.23.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numpy-1.23.1-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 13.3 MB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7e8229f3687cdadba2c4faef39204feb51ef7c1a9b669247d49a24f3e2e1617c
MD5 80115a959f0fe30d6c401b2650a61c70
BLAKE2b-256 97874cab42d344f9ca65225d895ee30e0c349a0d0460317cdfa657523a553bdb

See more details on using hashes here.

File details

Details for the file numpy-1.23.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.23.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.1 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 aeba539285dcf0a1ba755945865ec61240ede5432df41d6e29fab305f4384db2
MD5 f40cdf4ec7bb0cf31a90a4fa294323c2
BLAKE2b-256 7108bc1e4fb7392aa0721f299c444e8c99fa97c8cb41fe33791eca8e26364639

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page