Skip to main content

NumPy is the fundamental package for array computing with Python.

Project description

It provides:

  • a powerful N-dimensional array object

  • sophisticated (broadcasting) functions

  • tools for integrating C/C++ and Fortran code

  • useful linear algebra, Fourier transform, and random number capabilities

  • and much more

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.

All NumPy wheels distributed on PyPI are BSD licensed.

NumPy requires pytest and hypothesis. Tests can then be run after installation with:

python -c 'import numpy; numpy.test()'

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.23.2.tar.gz (10.7 MB view details)

Uploaded Source

Built Distributions

numpy-1.23.2-pp38-pypy38_pp73-win_amd64.whl (14.5 MB view details)

Uploaded PyPy Windows x86-64

numpy-1.23.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

numpy-1.23.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (17.5 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

numpy-1.23.2-cp311-cp311-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

numpy-1.23.2-cp311-cp311-win32.whl (12.2 MB view details)

Uploaded CPython 3.11 Windows x86

numpy-1.23.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

numpy-1.23.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

numpy-1.23.2-cp311-cp311-macosx_11_0_arm64.whl (13.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

numpy-1.23.2-cp311-cp311-macosx_10_9_x86_64.whl (18.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

numpy-1.23.2-cp310-cp310-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

numpy-1.23.2-cp310-cp310-win32.whl (12.2 MB view details)

Uploaded CPython 3.10 Windows x86

numpy-1.23.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numpy-1.23.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numpy-1.23.2-cp310-cp310-macosx_11_0_arm64.whl (13.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numpy-1.23.2-cp310-cp310-macosx_10_9_x86_64.whl (18.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

numpy-1.23.2-cp39-cp39-win_amd64.whl (14.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

numpy-1.23.2-cp39-cp39-win32.whl (12.2 MB view details)

Uploaded CPython 3.9 Windows x86

numpy-1.23.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

numpy-1.23.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

numpy-1.23.2-cp39-cp39-macosx_11_0_arm64.whl (13.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

numpy-1.23.2-cp39-cp39-macosx_10_9_x86_64.whl (18.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

numpy-1.23.2-cp38-cp38-win_amd64.whl (14.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

numpy-1.23.2-cp38-cp38-win32.whl (12.2 MB view details)

Uploaded CPython 3.8 Windows x86

numpy-1.23.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

numpy-1.23.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

numpy-1.23.2-cp38-cp38-macosx_11_0_arm64.whl (13.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

numpy-1.23.2-cp38-cp38-macosx_10_9_x86_64.whl (18.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file numpy-1.23.2.tar.gz.

File metadata

  • Download URL: numpy-1.23.2.tar.gz
  • Upload date:
  • Size: 10.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.2.tar.gz
Algorithm Hash digest
SHA256 b78d00e48261fbbd04aa0d7427cf78d18401ee0abd89c7559bbf422e5b1c7d01
MD5 9bf2a361509797de14ceee607387fe0f
BLAKE2b-256 f46617b8e95770478436bf968353c89683ce6f9e14d92e0d4fb3111c09ba18d2

See more details on using hashes here.

File details

Details for the file numpy-1.23.2-pp38-pypy38_pp73-win_amd64.whl.

File metadata

  • Download URL: numpy-1.23.2-pp38-pypy38_pp73-win_amd64.whl
  • Upload date:
  • Size: 14.5 MB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.2-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 be6b350dfbc7f708d9d853663772a9310783ea58f6035eec649fb9c4371b5389
MD5 3a6f1e1256ee9be10d8cdf6be578fe52
BLAKE2b-256 a5ed803b31039f613058b1359d48ca3a6be8116d7a49c644ab5958d0c059caf2

See more details on using hashes here.

File details

Details for the file numpy-1.23.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.23.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2bd879d3ca4b6f39b7770829f73278b7c5e248c91d538aab1e506c628353e47f
MD5 4ab13c35056f67981d03f9ceec41db42
BLAKE2b-256 1f9f6c5e5076834e009c9a5fd009a8b8dedeb56976b64b71a53b718c916b43a3

See more details on using hashes here.

File details

Details for the file numpy-1.23.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.23.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 17.5 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 806970e69106556d1dd200e26647e9bee5e2b3f1814f9da104a943e8d548ca38
MD5 355a231dbd87a0f2125cc23eb8f97075
BLAKE2b-256 f620001995044e785ee7b806785dcbf052c62bfd28f3b4bc1562b3d612754828

See more details on using hashes here.

File details

Details for the file numpy-1.23.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numpy-1.23.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 14.6 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 8ecb818231afe5f0f568c81f12ce50f2b828ff2b27487520d85eb44c71313b9e
MD5 ead32e141857c5ef33b1a6cd88aefc0f
BLAKE2b-256 f5853b622959cc922874aee72fc5c9db87c3e3779c7404d0370faab80450a3f3

See more details on using hashes here.

File details

Details for the file numpy-1.23.2-cp311-cp311-win32.whl.

File metadata

  • Download URL: numpy-1.23.2-cp311-cp311-win32.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.2-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 d98addfd3c8728ee8b2c49126f3c44c703e2b005d4a95998e2167af176a9e722
MD5 a54b136daa2fbb483909f08eecbfa3c5
BLAKE2b-256 49c9fa9cbbf6f9a1d870bf8e89d462dc46831728d02e6bcee477ed5bda6fced5

See more details on using hashes here.

File details

Details for the file numpy-1.23.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.23.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ac987b35df8c2a2eab495ee206658117e9ce867acf3ccb376a19e83070e69418
MD5 9b8389f528fe113247954248f0b78ce1
BLAKE2b-256 274b4ee1067b542fbff6acc64ca937e7920f40706921ed5e3ea53f46a1d15670

See more details on using hashes here.

File details

Details for the file numpy-1.23.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.23.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5593f67e66dea4e237f5af998d31a43e447786b2154ba1ad833676c788f37cde
MD5 ec23c73caf581867d5ca9255b802f144
BLAKE2b-256 962b4c7c7b171e4112c65c88780ae9834e3bbcd44d443cc422b3422d0de1b0e4

See more details on using hashes here.

File details

Details for the file numpy-1.23.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numpy-1.23.2-cp311-cp311-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 13.3 MB
  • Tags: CPython 3.11, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ecfdd68d334a6b97472ed032b5b37a30d8217c097acfff15e8452c710e775524
MD5 e3004aae46cec9e234f78eaf473272e0
BLAKE2b-256 108e843caee5e70d9edb8b01dc9418edbf475200abde5299136683006ed2d58b

See more details on using hashes here.

File details

Details for the file numpy-1.23.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.23.2-cp311-cp311-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.1 MB
  • Tags: CPython 3.11, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dc76bca1ca98f4b122114435f83f1fcf3c0fe48e4e6f660e07996abf2f53903c
MD5 8ecdb7e2a87255878b748550d91cfbe0
BLAKE2b-256 185107c1c49cbf334b54f3f7a73c5a84a8244049bdf716b06611ff9de435620e

See more details on using hashes here.

File details

Details for the file numpy-1.23.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numpy-1.23.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 14.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8ebf7e194b89bc66b78475bd3624d92980fca4e5bb86dda08d677d786fefc414
MD5 01e508b8b4f591daff128da1cfde8e1f
BLAKE2b-256 15b1166dc9111024caedff5f9bcce8f115ac532e0b117eddbb4cc545c42228e9

See more details on using hashes here.

File details

Details for the file numpy-1.23.2-cp310-cp310-win32.whl.

File metadata

  • Download URL: numpy-1.23.2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 df28dda02c9328e122661f399f7655cdcbcf22ea42daa3650a26bce08a187450
MD5 0caad53d9a5e3c5e8cd29f19a9f0c014
BLAKE2b-256 d55729aa1125ebfa31c62386356a77ac68693c7bf32fb7d8d5deb97c875eeb4b

See more details on using hashes here.

File details

Details for the file numpy-1.23.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.23.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bdc02c0235b261925102b1bd586579b7158e9d0d07ecb61148a1799214a4afd5
MD5 4ed412c4c078e96edf11ca3b11eef76b
BLAKE2b-256 7f9943b8e647339c633c0648a6b29a8989971effb1ec03dd6994a1e23c6d3c08

See more details on using hashes here.

File details

Details for the file numpy-1.23.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.23.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 17e5226674f6ea79e14e3b91bfbc153fdf3ac13f5cc54ee7bc8fdbe820a32da0
MD5 df059e5405bfe75c0ac77b01abbdb237
BLAKE2b-256 15aaf831165eefc6e0f10082db7b314871490f30791f9e6a2ddc404828c77e67

See more details on using hashes here.

File details

Details for the file numpy-1.23.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numpy-1.23.2-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 13.3 MB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 633679a472934b1c20a12ed0c9a6c9eb167fbb4cb89031939bfd03dd9dbc62b8
MD5 0ab14b1afd0a55a374ca69b3b39cab3c
BLAKE2b-256 bdf325f99b1312a072b729249293528a38327debf2b8e93aa84b59832e2c1a1f

See more details on using hashes here.

File details

Details for the file numpy-1.23.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.23.2-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.1 MB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e603ca1fb47b913942f3e660a15e55a9ebca906857edfea476ae5f0fe9b457d5
MD5 fe1e3480ea8c417c8f7b05f543c1448d
BLAKE2b-256 7ac338e826f1c0697e7c5f50ebcfc15672b53d5204c629f2203f4c018d6f39b0

See more details on using hashes here.

File details

Details for the file numpy-1.23.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numpy-1.23.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 14.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5e28cd64624dc2354a349152599e55308eb6ca95a13ce6a7d5679ebff2962913
MD5 d7af57dd070ccb165f3893412eb602e3
BLAKE2b-256 94a8f49341e9b3d766be1aaaeeb0f3b5ea783c03fe858b825e30259e6fa63ecd

See more details on using hashes here.

File details

Details for the file numpy-1.23.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: numpy-1.23.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 cf8c6aed12a935abf2e290860af8e77b26a042eb7f2582ff83dc7ed5f963340c
MD5 2b7c79cae66023f8e716150223201981
BLAKE2b-256 3634592e7862766847bb103e17518a149f7da83c3b223c7b8933bc26bbaf078b

See more details on using hashes here.

File details

Details for the file numpy-1.23.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.23.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c403c81bb8ffb1c993d0165a11493fd4bf1353d258f6997b3ee288b0a48fce77
MD5 8ee105f4574d61a2d494418b55f63fcb
BLAKE2b-256 f8eaff38168d6565a8549f819699cac4d89bbc38fc5b27fb94f8e92bcd713348

See more details on using hashes here.

File details

Details for the file numpy-1.23.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.23.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8f9d84a24889ebb4c641a9b99e54adb8cab50972f0166a3abc14c3b93163f074
MD5 76262a8e5d7a4d945446467467300a10
BLAKE2b-256 d0d2eb5aad7aae64618a128d0de3909058403cad0fd0391e0e21e302a8f7755c

See more details on using hashes here.

File details

Details for the file numpy-1.23.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numpy-1.23.2-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 13.3 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 806cc25d5c43e240db709875e947076b2826f47c2c340a5a2f36da5bb10c58d6
MD5 7f2ad7867c577eab925a31de76486765
BLAKE2b-256 14ef726b45ca7229d54d42f012b20e879b3566f794ce1ee3950ecc34f84f3821

See more details on using hashes here.

File details

Details for the file numpy-1.23.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.23.2-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.1 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4f41f5bf20d9a521f8cab3a34557cd77b6f205ab2116651f12959714494268b0
MD5 d156dfae94d33eeff7fb9c6e5187e049
BLAKE2b-256 c9df489be4464354bfb64b0ccae199740c4d89ce8b2a32ae2365c48166fd551a

See more details on using hashes here.

File details

Details for the file numpy-1.23.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: numpy-1.23.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 14.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 dec198619b7dbd6db58603cd256e092bcadef22a796f778bf87f8592b468441d
MD5 b5c5a2f961402259e301c49b8b05de55
BLAKE2b-256 faca5e0d36d65772b5ff586e94103cd9b2de216e544444651fc2681165c6d02c

See more details on using hashes here.

File details

Details for the file numpy-1.23.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: numpy-1.23.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 9b83d48e464f393d46e8dd8171687394d39bc5abfe2978896b77dc2604e8635d
MD5 c246a78b09f8893d998d449dcab0fac3
BLAKE2b-256 8e09ddc6c59633bd34d716ac9bbefb945368bbcbb620fbcc3b45b1e4e6850651

See more details on using hashes here.

File details

Details for the file numpy-1.23.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.23.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bd5b7ccae24e3d8501ee5563e82febc1771e73bd268eef82a1e8d2b4d556ae66
MD5 c26ea699d94d7f1009c976c66cc4def3
BLAKE2b-256 2c5bba2f6d662dfc0c8c9927c05faf2e722a7a7f417ad4665800f819174b818f

See more details on using hashes here.

File details

Details for the file numpy-1.23.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.23.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b8b97a8a87cadcd3f94659b4ef6ec056261fa1e1c3317f4193ac231d4df70215
MD5 edeba58edb214390112810f7ead903a8
BLAKE2b-256 301c729be6462c939a75f6e484ced255ce6ef4dbba1354b56928123c588deb48

See more details on using hashes here.

File details

Details for the file numpy-1.23.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numpy-1.23.2-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 13.3 MB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8247f01c4721479e482cc2f9f7d973f3f47810cbc8c65e38fd1bbd3141cc9842
MD5 04c986880bb24fac2f44face75eab914
BLAKE2b-256 9fdee59ba2debde8bd3ef09f48222ad008c7ec8f21d5aef154869f08bbf487b8

See more details on using hashes here.

File details

Details for the file numpy-1.23.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.23.2-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.1 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.5

File hashes

Hashes for numpy-1.23.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 909c56c4d4341ec8315291a105169d8aae732cfb4c250fbc375a1efb7a844f8f
MD5 df1f18e52d0a2840d101fdc9c2c6af84
BLAKE2b-256 fc90fa2ca0f2fcabbfd970e1e78f820d8639683c36525e1c89d9bd20e69230a7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page